
Final Group Report
Group: CI04SI2

Member Name Student ID Roles

Loh Jianyang John 1006360
Backend Developer and
Tester

Chia Chun Mun 1005934
Frontend Developer - View
Subsystem
Frontend Tester
System Tester

Gizelle Lim Yin Xuan 1006141
Frontend Developer -
Homepage Subsystem
Sidebar Subsystem
Frontend Tester
System Tester

Mohammed Ansar Ahmed 1006015 Backend Developer and
Tester

Dinh Thao Vy 1006124 Frontend Developer - Form
Subsystem
Frontend Tester
System Tester

Lim Jun Kiat 1005960 Frontend Developer - Login
Subsystem
Frontend Tester
System Tester

Cheng Ee 1004896 Frontend Developer -
Account Creation
Subsystem
Password Management
Subsystem

Cloud Solutions Engineer,
Backend Software Architect,
Cloud integration specialist

Wang Jun Long Ryan 1005923 Backend Developer

Cloud Solutions Engineer,

Backend Software Architect,

Cloud Integration Tester,



Requirement 3
Design 5
Implementation Challenges 18

Algorithmic Challenges 18
Engineering Challenges 18

Backend 18
Frontend 19

Testing Challenges 20
Backend 20
Frontend 20

Testing 22
Backend 22
Backend AWS 24
Frontend 24

Lessons Learnt 28
Deliverables 29



Requirement

Final Requirements

3 account types: OSL, Fifth Row EXCOs and ROOT

About 1000 characters per section for OSL to comment

Prompt event dates in the EPF when event date is too near the EPF submission date

Account creation functionality

Form validation to ensure fields are filled up properly

A consolidated page to view their forms easily

We have dropped the file upload as part of the previous requirements as we have shifted our

focus on the AWS implementation instead as part of the agile manifesto.

As for the notification system, we implemented the email service using AWS simple email

service and we were using ses sandbox. The sandbox is to prevent people from spamming.

The sandbox ses require us to manually verify accounts or own the SUTD domain email. We

then tried to request to be removed from the sandbox but aws rejected the request. Thus we

were unable to proceed with the notification system.

OSL-Fifth Row App is a web application that aims to improve the event proposal form

submission and management process for OSL, Fifth-Row EXCOs and ROOT users.

Our use case diagram showcases our web application system's overall functions and scope:

OSL-Fifth Row App. The app has 7 main use cases that users can make use of depending

on their roles and the permissions they have:

1) Create an Account (OSL)

2) Login (Fifth Row EXCOs, OSL, and ROOT)

3) Reset User Password (Fifth Row EXCOs, OSL, and ROOT)

4) View Form Archive (Fifth Row EXCOs, OSL, and ROOT)

5) Comment on Forms (OSL and ROOT)

6) Approve Forms (OSL)

7) Submit Forms (EXCOs)



The relationship between each use case is demonstrated in the use case diagram below:



Design

Class Diagram



Database Design







AWS Architecture



Sequence Diagrams
1. EXCO wants to create new EPF



2. EXCO wants to update existing EPF



3. EXCO wants to view existing EPF



4. OSL/ROOT wants to view EPFs



5. OSL/ROOT wants to leave comments in EPF



6. OSL wants to approve EPF



7. OSL wants to reject EPF



8. OSL wants to delete EPF



Implementation Challenges

Algorithmic Challenges

Since the app mostly involves just data validation, sorting, filtering, and storage there were

minimal algorithmic challenges faced, both on the frontend and backends codebase.

However, as more complicated features get onboarded in the future there will be a greater

need for complex algorithms to be utilized for implementing those features. For example one

of our future features to be implemented is room booking and allocation in which we can use

a modified version of the knapsack algorithm to efficiently allocate booking of venues for

events.

Engineering Challenges

Backend

1. Invalid Query: Using string formatting directly to build the DB query resulted in errors as

string data contains SQL keywords additionally DB is vulnerable to SQL injection or invalid

Query

- Solution: Use the parameterized query

2. Race condition: Since async programming allows for tasks to be scheduled concurrently

and Postgres DB allows for multithreading, we faced read/write tears for data, especially

during the testing phase.

- Solution: Serialization and/or Read Committed isolation and Row-Locking for DB

queries

3. Deadlock: Since we introduced locks we also ran into the issue of deadlocks

- Solution: Deadlock detection(provided by posture package) and resolution (A release

and retry mechanism implemented in our server)

4. Migration to Amazon Web Services (AWS): The cloud services offered by AWS often

demand various code changes that force both the front end and the back end to adapt



accordingly. This is especially evident with the use of API Gateway, Amplify, and Lambda

functions.

- Solution: Increased communication between the backend and frontend team to

convey what is required from both ends as well as reading the documentation of the

tools (AWS services such as AWS Cognito).

Frontend

1. Form - Table: The tables in an EPF form are of different shapes and different minimum

rows required, with some having row names and static row values, while some needing

options to add new rows/delete existing rows. Both of these can occur in the same table,

which means the ‘Table’ component, which only has basic functionalities from external

libraries (React/MUI/Vue) cannot be used.

- Solution: With consideration that the app might expand to other forms aside from

EPF, build custom components for EPF tables allowing props that specify validation,

required, dynamic-ness (add new row/delete row), etc to maximise the modularity

and reusability of the code. The custom components use the ‘Grid’ component form

MUI to keep leveraging on MUI’s clean css.

2. Form - Load EPF: An EPF form loaded from the server might have some fields disabled

depending on the status of the form and the user’s edit permissions (e.g. all input fields such

as Event Name are disabled for OSL users).. React Hooks, and in particular, useForm() from

‘react-hook-form’ must be called in a React functional component, but asynchronous API

calls can only be placed in the lifecycle method useEffect(). WIth the new information from

the API call consumption in useEffect(), fields that must be set to disabled have to be

re-registered again, but this will trigger the component to re-render, which in turn trigger the

useEffect() method again, landing the component in an infinite re-render cycle.

- Solution: Create a wrapper component that initially renders a spinner. Once the API

call finishes, it will then render the original EPF form component with the correct

disabled/enabled properties.



Testing Challenges

Backend
1. JSON data for testing Event Proposal Forms (EPFs) are very long

To work around the problem of having several long JSON data inputs in our test

suites, we placed the test JSONs into a separate folder in the same directory level as

the test suite. Which we shared on

The numerous fields of EPFs with various data structures also posed a problem for

generating test cases. We applied the concept of equivalence class testing to

generate fewer test cases that will still provide a broad, comprehensive code test

coverage. In the end, we achieved a comprehensive code test coverage of 90.22%.

2. Jest runs test cases concurrently and although the main server code was designed to

handle concurrency, the test scripts written were not as they required to set up and

tear down for each test case and values such as EPF count and epd_id are

interdependent and dynamic. This makes making test cases, especially making test

cases that test for exact matches, significantly more difficult. We hence decided to

run the test cases InBand (test suites are run sequentially one after the other)

Frontend

First of all, there would be too many test cases available to test for. We can individually test

for every single button and field in the forms. In a short period, to cover all the different test

case categories, we have to be selective. Thus, we applied the concept of equivalence

testing and avoided the repetitive test cases.

Initially, we also faced issues to mock the data in jest and selenium. It kept prompting us

errors regarding packages etc. As it was the first time using jest for all of us, we were stuck

and went on exploring how to fix the error for 2 days before coming together to sit down and

tackle the problem with the information each of us have gathered.

When using Selenium testing, some components of the webpage render quicker than the

rest, thus some of the code in Selenium will execute first before waiting for the browser.

Thus, this causes the test suite to fail. To counter this, we either await till the element

appears before executing the action (e.g. click or enter keys) or we can add a delay between

the codes to let the webpage have enough time to render before continuing executing.



We also want our tests to execute successfully on any computer, not just the computer of the

developer who wrote the test. As such, instead of hard-coding the values that a form must

take e.g. form with id = 2 has the event name “Test Event”, we modified the test setup such

that it will create a new form with id = x, with a unique event name using the API createEPF.

The test itself then mock-renders the corresponding React component, loads the form with id

= x, and checks that the UI is correctly displaying the event name. This is also in line with

Jest’s spirit - testing the component rather than the page loaded with the component.



Testing

Backend

Link to backend Test case tables:
https://sutdapac-my.sharepoint.com/:x:/g/personal/mohammed_ansar_mymail_sutd_edu_sg/

EfoC2AfGgklPo0kR4Ehka38BPaW5QrVLExjFM7EO_PQn9g?e=Nt2DVQ

The test cases for individual backend API functions were generated using equivalence class

testing to come up with fewer, but comprehensive test cases, inclusive of positive and

negative testing, that provided a wide code coverage (90.22%).

Testing was done using Jest. Unit testing was performed where each API function was

tested. Integration testing was also done by testing the API function’s interaction with the

database.

The backend API functions that were tested include the following:

EPF

● createEPF

● getEPF

● getEPFs

● getEXCOEPFs

● updateEPF

● deleteEPF

● countOutstandingEpf

User

● createUser

● getUser

● getUsers

● updateUser

● deleteUser

https://sutdapac-my.sharepoint.com/:x:/g/personal/mohammed_ansar_mymail_sutd_edu_sg/EfoC2AfGgklPo0kR4Ehka38BPaW5QrVLExjFM7EO_PQn9g?e=Nt2DVQ
https://sutdapac-my.sharepoint.com/:x:/g/personal/mohammed_ansar_mymail_sutd_edu_sg/EfoC2AfGgklPo0kR4Ehka38BPaW5QrVLExjFM7EO_PQn9g?e=Nt2DVQ


Our unit and integration testing process follows the general recipe:

1. Truncate the users and EPFs database tables in before() or beforeEach() (test case

dependent)

2. Set up the necessary prerequisites for test cases in beforeAll() or beforeEach() (test

case dependent). This includes:

● Fifth-Row EXCO user accounts that EPFs need to be linked to

● EPFs

3. In each test case

● Retrieve JSON data for DB operation and positive/negative checking (can be

found in the testing document), if necessary

● Execute the test

● Perform the positive/negative checking

The backend API middleware functions were tested using fuzzy testing, in particular, fuzzing

the low-level request - generating random bytes as HTTP requests to test the robustness of

the API service. The backend API middleware functions that were tested included the

following:

● createEPFmiddleware

● getEPFmiddleware

● updateEPFmiddleware

● deleteEPFmiddleware

Our fuzzy testing process follows the general recipe:

1. Testing positive behaviour using a valid request body (can be found in the testing

document)

2. Testing negative behaviour where random bytes, incomplete, incorrect request

bodies, or params are sent (can be found in the testing document)

The final results of testing locally on the backend are as follows:

Overall Test Coverage: 90.22%



To help achieve more modularity, a database utilities file was used to create and release

connections across the test cases.

Backend AWS

Most of the test cases done locally (backend API middleware functions not included) in the

backend were migrated over to AWS as part of our Agile Manifesto.

The testing tools (Jest) and the recipes for the testing process are the same. The main

difference in testing with AWS lies in changing the code to use the local database, to the

database hosted on AWS via lambda functions.

Frontend

Link to frontend Test case tables:
https://docs.google.com/spreadsheets/d/11ocfVnybG_ygzhj-RaptEct_jUMCW6TEdwZBHas

mIwg/edit#gid=23257494

On the frontend’s side, unit and system testing was conducted to test the functionality of

each frontend component. As the main purpose of the app is to allow users to fill in forms,

there naturally were many fields and combinations that we could test. However, due to the

lack of time and manpower, we could only perform a limited amount of testing. Hence, we

made use of equivalence class testing to come up with fewer, but comprehensive test cases

that would simulate users’ common responses and mistakes such that the main usage of the

form was tested.

Testing was done using Jest and Selenium. Unit testing was done to test the various

functions of each frontend component. System testing was also performed to test the

essential functionality of each frontend component, the integration between the different

frontend components, as well as the integration between frontend and backend components.

Our unit testing covers the five main components of the app which include login, homepage,

sidebar, epf submit, and epf view. Comprehensive tests were done to ensure that there

https://docs.google.com/spreadsheets/d/11ocfVnybG_ygzhj-RaptEct_jUMCW6TEdwZBHasmIwg/edit#gid=23257494
https://docs.google.com/spreadsheets/d/11ocfVnybG_ygzhj-RaptEct_jUMCW6TEdwZBHasmIwg/edit#gid=23257494


exists proper rendering and functionality of each component. Testing was also done to

simulate API calls from the backend to display the relevant information.

As some of our unit tests were done using Selenium, we were unable to generate a test

report for them. Hence, what we have are the unit tests that were done using Jest, the test

report for each of these components can be seen here:



Our system testing comprises five test suites that cover the 7 use cases mentioned above.

These test suites primarily focused on the routing of pages and testing the integration of the

frontend components. Hence, what we tested covered the processes of:

● Login to form submission for EXCOs

● Login to the approval of forms for OSL

● Reset user password

● View from the archive for both EXCOs and OSL

● Account creation and login

The final test report for the five test suites tested locally is shown below:





Lessons Learnt
The software development process we adopted was Iterative and incremental in the initial

phase followed by the Agile method after the main functionalities have been implemented in

the software.

In hindsight, it would be ideal to start developing the software on AWS in the beginning to

allow ample time to implement additional features. That said, many members were not

experienced in AWS and it could also have been a liability to learn an entirely new skill

(usage of AWS) in conjunction with applying the concepts from class. Ultimately, one crucial

lesson that we learned was to write good documentation (use cases, class diagrams,

sequence diagrams, etc.) as well as read the documentation (for the tools we used like

AWS, PostgreSQL, jest, etc.).

Value from reading and writing good documentation:

1. Efficiency: well-documented diagrams, specifications, and class relations decrease

ambiguity for the software and speed up the development process.

2. Completeness: reading documentation for the tools used enables the development

process to be more thorough in covering edge cases or needs. Eg: Accounting for

concurrent queries in the Postgresql database - documentation. Without reading the

documentation, we would not have been able to handle concurrent queries.

3. Continuity: good documentation not only provides a good framework for the software

but also provides a clear direction as well as a platform to build upon for new features

in the future.

In addition, we also learned the importance of frequent communication between both the

frontend and backend. This is because we adopted the agile method and there were very

frequent changes. During the project, we disseminate updates in the telegram chat which

could be flooded with messages easily, thus resulting in some information not being passed

down to every member. Thus, towards the end, we opted to meet more regularly in physical

meaning and do focused sessions to code. This allows better and more efficient

communication between the frontend and backend teams.

https://www.postgresql.org/docs/current/mvcc.html


Deliverables
Frontend Repo: https://github.com/esctmp/osl-fifth-row-app
Backend Repo: https://github.com/a-nnza-r/ESC_backend
Link to demo video:
https://drive.google.com/file/d/1sQpJY8KudrkNaZZT0YPnvjGOF1c7M81x/view?usp=sh
aring

https://github.com/esctmp/osl-fifth-row-app
https://github.com/a-nnza-r/ESC_backend
https://drive.google.com/file/d/1sQpJY8KudrkNaZZT0YPnvjGOF1c7M81x/view?usp=sharing
https://drive.google.com/file/d/1sQpJY8KudrkNaZZT0YPnvjGOF1c7M81x/view?usp=sharing

