
50.007 Machine Learning Design

Project

Group Members: 2
Instructions to Run Code 2
Part 1(Refer to the part1.ipynb file) 3

Subpart a (5 points) 3
Approach 3

Subpart b (10 points) 4
Approach 4

Subpart c (10 points) 4
Approach
In the testing phase, we intend to label the given test set dev.in by following the steps
below 4
ES and RU Evaluation Results 5

Part 2 (Refer to the part2.ipynb file) 6
Subpart a (10 points) 6

Approach 6
Subpart b (15 points) 7

Approach 7
ES and RU Evaluation Results 8

Part 3 (Refer to the part3.ipynb file) 9
Subpart a (25 points) 9

Approach 9
Algorithm Overview: 9
Data Structure: 11
Main Loop: 11
ES and RU Evaluation Results 12

Part 4 (Refer to the part4.ipynb file) 15
Subpart a (10 points) 15

Approach 15
General Algorithm: 15
Smoothing Techniques Used: 16

Laplace Smoothing: A simple additive smoothing by adding counts to
“pseudocounts” to ensure no probability is 0. 16
Witten-Bell Smoothing: 16
Absolute Discounting: 17

Stages for our new system: 17

1. Data Preparation 17
2. Hyperparameter Tuning 17
3. Model Training 17
4. Prediction & Cross Validation 18
5. Final Model Selection & Testing 18

Subpart b (15 points) 19
Results -ES and RU Evaluation 19
Other considerations: 20

Bidirectional HMMs 20
Second-order HMM 20

Group Members:
Toh Hengyi Lucas 1006061

Mohammed Ansar Ahmed 1006015

Wang Jun Long Ryan 1005923

Jone Chong 1006338

Instructions to Run Code

You may clone this Git repo: https://github.com/a-nnza-r/ML-proj.git
Or
Refer to the submitted zip file

Each Python notebook represents Q1, Q2, Q3 and Q4 respectively. Run all cells for each

notebook to get the results as listed in this document.

https://github.com/a-nnza-r/ML-proj.git

Part 1(Refer to the part1.ipynb file)

Subpart a (5 points)

Approach

For Part 1, our approach to estimate the emission parameters from the training set using MLE

follows these steps:

1. We first read the training contents file and split by “\n” to separate each of the sentences.

2. Next, for each word-label pair, we split the line by spaces to separate the word and the

label. This step also considers the presence of spaces in the words itself such as in the

case of the RU training set where there are words with spaces.

For e.g word = “. ..”, label = “O”

3. After separating the words and the labels, we can start the supervised learning process

by calculating the emission parameters as follows :

Calculation of the emission parameter for all labels and the words they are calculated by

counting the number of times the label is observed to emit word over the total

occurrences of the label in the training set.

Subpart b (10 points)

Approach

For Part 2, our fix to this function for computing the emission parameters would be as follows:

We make the following modifications from Part 1 to the emission parameters used.

1. Recalculate all emission parameters for every word that exists in the dataset by adding 1

to the denominator (i.e the number of occurrences of label + 1)

2. Calculate the emission parameters e(“#UNK# | y) = 1/(count(y)+1) for all labels y.

Subpart c (10 points)

Approach
In the testing phase, we intend to label the given test set dev.in by
following the steps below

1. Split the test set dev.in by “\n” to separate the words.

2. For each test word in the test words:

1. We check if the test word exists in the training set.

a. If the test word exists, then we will compare the emission probability of that test

word by the labels that emit it and pick the label that has the highest emission

probability of that test word.

b. If the test word DOES not exist, then we will compare the emission probability of

the word “#UNK#” by all the labels and pick the label that has the highest

emission probability of “#UNK#”.

3. Now for each test word, there is an associated predicted label attached to it based on

the above method.

4. We create dev.p1.out by creating the file where each line represents the test word and

the predicted label, placing spaces where necessary to match the format of dev.out.

ES and RU Evaluation Results

Part 2 (Refer to the part2.ipynb file)

Subpart a (10 points)

Approach

For Part 1, we will estimate the transition parameters from the training set using MLE as follows:

1. First, we split the training file contents by “\n” to separate each word and label, following

the steps as in Question 1 to deal with cases where there are spaces in the word.

2. Next, we extract only the labels from each word-label pair and append it to training labels

according to the sequence in the training set. In lines where there is no word-label pair

(i.e a space), we will instead substitute it with the labels : STOP,START where STOP

indicates the end of the previous sentence and START indicates the start of the next

sentence.

3. We add START to the index 0 position of the training labels list as well as ensure that the

last label is a STOP instead of a STOP,START.

4. Now we have prepared the training labels set, we can start calculating the transition

probabilities is follows :

5. For each label y_i in the training labels set, we will look at the label y_j directly in front of

it. We add 1 to the numerator count from y_i to y_j. We repeat this for every label in the

training labels set. Next, we calculate the transition probabilities by dividing all the

numerator counts (number of transition from y_i to y_j) over the denominator count

which is the occurrence of the label (number of y_i) for all i and all j.

Subpart b (15 points)

Approach

For Part 2, we intend to use the estimated transition parameters from Q2 and estimated

emission parameters from Q1 to perform prediction on the test set dev.in using the Viterbi

algorithm.

We can assume that the model parameters are already learnt in the previous questions. To run

the Viterbi algorithm on the dev.in, we follows these steps:

1. Create a Viterbi matrix where the rows denoted by index v represent the different

possible states (e.g START, O, B-positive …) and the columns denoted by index k

represent the words/observations at indexes 1 to n, where index 0 represents the start

and index n+1 would represent end state as per the Viterbi matrix shown in class. Each

entry in this Viterbi matrix stores the highest score/probability at a particular state for a

particular word.

2. Create a parent list to store the parent that resulted in the largest probability for every

column j in the Viterbi matrix.

3. To begin populating the matrix, we will first initialise the first column where the row that

represents START will be set to 1.

4. Next, we will populate the matrix in the subsequent rows in a bottom-up approach.

5. We use v to represent the row index to represent states and k to represent the column

index represent the words.

6. For all k from 1 to n+1, for each v for all states excluding START and STOP:

a. Initialise a max score and a max parent variable.

b. For each state u for all states, calculate viterbi_matrix[u][k-1] * emission

probability at state v for word at index k-1 * transition probability from state u at

k-1 to state v at k.

c. Keep track of the u that leads to the highest value.

d. Keep track of the highest value for each u.

e. After exiting the for loop at b, set the max score at index k and state v to the

highest value for all the u. Also, set the max parent at index k and state v to be

the u that leads to the above highest value.

7. When reaching the STOP state, populate viterbi_matrix[STOP state index][n+1] by

looking for the highest value of viterbi_matrix[v][n] * transition probability from state v at

column k=n to STOP for all v. Once again, we will keep track of the v* that led to the

highest value and store this v* as the max parent at index n.

8. Now, we can use the parent list that stores the max parents at each k to trace the

optimal sequence of v.

Note : To account for underflow issues in Part 2, we take log for any transition or emission

probability. Hence, in the above multiplications of probabilities, they become addition instead as

shown in the code.

ES and RU Evaluation Results

Part 3 (Refer to the part3.ipynb file)

Subpart a (25 points)

Approach

The `k_best_viterbi` algorithm is an extended version of the traditional Viterbi algorithm,

designed to find the top k best paths in a Hidden Markov Model (HMM). It maintains a data

structure called the `scores` dictionary, which stores k-best scores and backpointers for each

position and state, enabling efficient path reconstruction.

Algorithm Overview:

1. Input:

- `y_count`: Count of states in the HMM.

- `emission_count`: Emission count statistics.

- `transition_counts`: Transition count statistics.

- `training_observations_x`: Training observations.

- `x_input_seq`: Input sequence for which paths are to be found.

- `k`: The number of top paths to be found (default is 1).

2. Initialization:

- Initialize the `states` list containing all possible states.

- Initialize the `scores` dictionary to store k-best scores and backpointers.

3. Position and State Initialization:

- Iterate over positions `i` from 0 to `n`, and for each state `state`:

- Initialize a list of k tuples in `scores[(i, state)]`, each containing (score, parent state, index in

parent score list).

4. Initialization of STOP State:

- Set `scores[(n+1, "STOP")]` to `None`, as no transitions lead from STOP.

5. Initialization of START State:

- Initialize `scores[(0, "START")]` with a single tuple [(0.0, None, None)].

- This marks the initial state with a score of 0.0 and no parent state.

6. Dynamic Programming Step:

- Iterate over positions `t` from 1 to `n`, and for each state `v`:

- Initialize an empty list `all_scores`.

- For each previous state `u`:

- Calculate emission and transition probabilities.

- Compute the current state's score considering all possible paths from `u`.

- Append the calculated score, `u`, and index in parent score list to `all_scores`.

- Sort `all_scores` in descending order and store the top k scores in `scores[(t, v)]`.

7. Transition to STOP State:

- Similar to the dynamic programming step, calculate scores for transitions from all states to

the STOP state.

- Store the top k scores in `scores[(n+1, "STOP")]`.

8. Backtracking and Path Reconstruction:

- Initialize an empty list `k_best_paths`.

- For each index `idx_in_STOP_list` in the range of k:

- Initialize an empty list `path`.

- Retrieve the score, parent state, and index from `scores[(n+1, "STOP")]` for the current

index.

- Backtrack from STOP to START using parent states and indices, constructing the path.

- Insert the constructed path at the beginning of `k_best_paths`.

9. Return Paths and Scores:

- Return the `k_best_paths` list containing the top k best paths from START to STOP, and the

`scores` dictionary containing k-best scores and backpointers.

Data Structure:

The core data structure in the algorithm is the `scores` dictionary. It has the following structure:

- Key: Tuple `(position, state)`

- Value: List of k tuples `(score, parent state, index in parent score list)`

This data structure efficiently stores the k-best scores and their associated information for each

position and state, enabling path reconstruction.

Main Loop:

The main loop iterates through each position in the input sequence and each state, performing

the following steps:

1. Initialize `all_scores` list.

2. Calculate scores for transitions from previous states to the current state.

3. Store the top k best scores in the `scores` dictionary for the current position and state.

The main loop's purpose is to systematically calculate and store the k-best scores, facilitating

the subsequent reconstruction of the top k best paths in the HMM.

Overall, the `k_best_viterbi` algorithm is a complex extension of the Viterbi algorithm that

efficiently finds the k-best paths in an HMM, making use of dynamic programming and careful

data structure management.

ES and RU Evaluation Results

Part 4 (Refer to the part4.ipynb file)

Subpart a (10 points)

Approach

We focused on increasing the F scores for the development set as defined in the question (and

provided in the evaluation script). To do so, we use various smoothing techniques such as

Laplace smoothing, Witten Bell Smoothing and Absolute Discounting to handle zero

probabilities (which will affect the probabilities for unseen words in the test data set).

General Algorithm:

1. Define necessary constants such as results (dictionary) and k_values (a list with a range

of hyperparameters to try) to be used later.

2. Data Preparation stage

3. Estimate transmission probabilities.

4. Model Training: Estimate emission probabilities with different smoothing techniques and

store their results into the results dictionary.

5. Prediction and Validation: Predict using viterbi’s algorithm and select the best smoothing

method (highest entity F scores)

6. Use the selected models1 to predict tags on the development set (which we also used as

the validation set) as well as the given test set.

1 The selected models (emission and transmission probabilities) in our system are different for both
languages

We came up with this general algorithm after considering other methods and realized that the

most (time and meaningfully) efficient way (within our capabilities) to improve F scores without

drastically changing the system entirely is to train models using various smoothing methods.

Hence, we explored three different smoothing techniques and experimented with the

hyperparameters (if any) with the objective of achieving a robust system. We considered the

nature of the project2, and realized that there can be a lot of unknown words in any test data set.

As such, we wanted the new system to train a model to be as robust as possible by accounting

for 0 probabilities and unknown words.

Smoothing Techniques Used:

Laplace Smoothing: A simple additive smoothing by adding counts to
“pseudocounts” to ensure no probability is 0.

The probability is given by: 𝑃(𝑥) = 𝑥 + 𝑘
𝑁 + 𝑉·𝑘

x: Count of the occurrence for the word.

k: Smoothing constant (default value in the implementation is 1) to avoid 0 probabilities.

N: Total count of all occurrences (words).

V: Number of possible unique observations.

Witten-Bell Smoothing:

The emission probability is given by: .𝑃(𝑥) = λ · 𝑥
𝑁 + (1 − λ) · 1

𝑉

x: Count of the occurrence for the word for each each state

T: Number of unique observations (unique words) for each state.

N: Total count of all occurrences for the word for each state.

:λ 𝑇
𝑇 + 𝑁

V: Number of unique words in the data set.

2 The project is concerned with correctly identifying sentiments and entities in tweets which can be highly
variable due to other factors such as slangs. Hence, the data used to train on is expected to be noisy and
the test data is expected to have a significant number of unknown words.

Absolute Discounting:

redistributing of weightage from observed words to unknown words with a constant d - a
hyperparameter to be tuned in the validation step.
The probability is given by: where .𝑃(𝑥) = 𝑚𝑎𝑥(𝑥−𝑑, 0)

𝑁 + 𝑃(𝑈𝑁𝐾)
𝑉 𝑃(𝑈𝑁𝐾) = 𝑑·𝑇

𝑁

x: Count of the occurrence for the word for each state.

d: A constant (discount) - a hyperparameter.

N: Total count of all occurrences for the word for each state.

T: Total count of unique observations (words) for each state.

V: Total count of unique observations (words) for the entire data set.

Stages for our new system:

1. Data Preparation

- prepare_data(file_path): Prepares the data including mappings for states and

observations.

2. Hyperparameter Tuning

- Laplace Smoothing: Iterates through k values (from 0.1 to 1) to optimize emission

probabilities.

- Absolute Discounting: Iterates through d values (from 0.01 to 1) to optimize emission

probabilities using absolute discounting.

- Witten-Bell Smoothing: Applies Witten-Bell smoothing to emission probabilities.

3. Model Training

- estimate_transmission_parameters(): Estimates transition probabilities.

- estimate_emission_parameters(): Estimates emission probabilities specific to Laplace

smoothing.

- estimate_emission_parameters_absolute_discounting(): Specific to Absolute

Discounting.

- estimate_emission_parameters_witten_bell(): Specific to Witten-Bell smoothing.

4. Prediction & Cross Validation

- viterbi(): Runs the Viterbi algorithm on validation data (dev data set).

- write_predictions_to_file(): Writes the predicted tags to a file.

- compute_scores(): Computes metrics such as precision, recall, and F1 score for both

entities and sentiments by importing the given evaluation script.

5. Final Model Selection & Testing

- best_results(): Identifies the best smoothing method and corresponding

hyperparameters.

- Retraining the model with the best method.

- Prediction on the validation set and writing predictions (dev.p4.out).

- Prediction on the test set with viterbi() and writing predictions to file. (test.p4.out)

Subpart b (15 points)

Results -ES and RU Evaluation

Other considerations:

Bidirectional HMMs

In our research, we explored the potential of employing bidirectional Hidden Markov Models

(HMMs) to enhance our performance. This approach aims to leverage contextual information by

considering both preceding and subsequent observations. We implemented two distinct variants

of bidirectional HMMs:

​ In the first variant, we utilized a standard HMM to calculate forward probabilities and a

separate HMM to compute backward probabilities. By comparing the tag label

discrepancies between these two sets of probabilities, we aimed to determine the most

probable label.

​ In the second variant, we employed a single HMM to calculate transition probabilities

from both the beginning to the end and from the end to the beginning. This allowed us to

capture information from both directions.

Upon closer examination, we realized that when employing the same training data for both the

forward and backward transition probabilities, the resulting labels were essentially the same, but

in reverse order. This observation led us to the conclusion that there were no conflicts in tag

labels, and the bidirectional HMM approach was yielding labels identical to those obtained

through a unidirectional HMM.

Second-order HMM

We also explored an alternative approach known as the second-order Hidden Markov Model

(HMM). The second-order HMM introduces the following key advantages:

1. Capturing Longer Dependencies: Unlike first-order HMMs, second-order HMMs take into

account not only the current state but also the state immediately preceding it during

transitions. This expanded consideration of context enables these models to capture

longer dependencies within a sequence. This capability is particularly valuable in tasks

where the context extends beyond just the immediate previous state.

2. Enhanced Representation: Second-order HMMs offer an improved representation of the

interactions and influences between language elements. By incorporating information

from the previous state, these models can potentially provide a more accurate portrayal

of the underlying dynamics, leading to enhanced tagging accuracy.

However, it's important to note that due to time constraints, we encountered challenges in fully

debugging and validating this approach as a functional model. On top of that, while

second-order HMMs offer promising advantages, we were unable to definitively ascertain their

efficacy. This uncertainty stems from a lack of confirmation regarding both the quality and

quantity of available training data, which can significantly impact the performance of such

models. It is most unfortunate that we weren't able to extensively test the second-order HMM

approach within our given timeframe.

There were plenty of other approaches that we were keen to try, like the multi-layered

perceptron neural network, but due to time constraints, we have decided to keep within the

scope of HMMs.

Aside from changing the models, we also explored other options as given in the hints. For

instance, we tried different smoothing methods for our emission parameters. One of them was

the Good-Turing smoothing, a technique used to estimate the probabilities of unseen events in a

dataset by leveraging the frequencies of events that have been observed. The formula is given

by:

𝑃
𝐺𝑇

(𝑟) =
(𝑟+1) 𝑁

𝑟+1

𝑁
𝑟

where:

● 𝑃
𝐺𝑇

(𝑟) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑜𝑜𝑑 − 𝑇𝑢𝑟𝑖𝑛𝑔 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟

● 𝑁
𝑟
 ​𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑟 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

● 𝑁
𝑟+1

 ​𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑟 + 1 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.

This formula essentially estimates the probability of an event with frequency as the ratio of the𝑟

number of events that occurred times to the number of events that occurred times,𝑟 + 1 𝑟

adjusted by a factor of .𝑟 + 1

However, our empirical results have shown that this was computationally intensive and the

results were less than satisfactory.

