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1 Introduction

With the third goal of the United Nations Sustainable Development Goals emphasizing the importance of
ensuring healthy lives and promoting well-being for all at all ages [1], this project aims to leverage advancements
in computer vision to support better exercise practices. Human pose estimation, a subfield of computer vision,
focuses on localizing and identifying human body joints in an image or video sequence. By utilizing this concept,
our project seeks to track body landmarks and assess whether a user’s posture is correct while performing specific
exercises, thereby contributing to healthier lifestyles.

To determine whether the user is doing an exercise (for example squats) properly, we need a model capable
of making accurate but high-speed inferences, such as the BlazePose model [2] (see Appendix B for details on
the original model), about the location of the user’s joint locations. Using the coordinates from the joints, we
can determine the angles between the joints and obtain a sinusoidal relationship.

Figure 1: Angle between the right knee, right hip and right ankle against frames

From figure 1, we can see that there is a clear sinusoidal pattern, and by determining the appropriate
threshold value we can determine the exercise repetition count. The task of determining body posture is more
complicated as the changes in the data pattern are not as clear. Therefore, the human pose estimation model
that supplies landmark coordinate data must provide very accurate coordinate data to reduce noise and obtain
clear data relationships when a user moves.

In order to receive more accurate data from the human pose estimation model, we modified existing models
through our understanding of the U-Net [3] architecture and Vision Transformers [4]. These enhancements aim
to improve the model’s accuracy in predicting skeletal key points, which would be salient in evaluating exercise
forms. The ability to determine proper posture hinges on precise landmark predictions, enabling the system to
compute joint angles and establish relationships between them. As the downstream task of predicting proper
forms for squats depends on the accuracy of the skeletal keypoints, this project focuses on improving keypoint
predictions as a measure of the system’s overall capability to provide meaningful and actionable feedback for
exercise correction.
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2 Project Objectives

Figure 2: BlazePose architecture from the original paper [2]

Blazepose uses a combined approach of heat maps (left branch) and regression (right branch) to predict
keypoints. During training, heatmaps are used to supervise lightweight embedding, which is then utilized by
the regression encoder network. Using the current BlazePose architecture as the foundation, we experimented
with different approaches to change the architecture and detailed the changes in performance. We aim to

• Modify the existing BlazePose model architecture and train it based on sourced dataset.

• Improve keypoint predictions, using Percentage of Correct Keypoints (PCK) as the evaluation metric.

• Detail trade-offs of the modified component between processing speed and accuracy.

3 Methodology

We adapted the original work (See Appendix B for more details) to form our base model for further
experimentation later on. Instead of predicting 33 keypoints, the base model would predict 14 keypoints to
align to our chosen dataset. There are three branches in the base mode, the backbone, heatmap branch and the
regression branch.
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3.1 System Design

Figure 3: Base Model - This project’s adaptation of the blazepose model

3.1.1 Backbone

The backbone serves as the feature extraction module of the model. It begins by processing the input image
through Conv 1, a convolutional layer with a stride of 2, which reduces the spatial resolution while increasing the
depth to 24 channels. This initial layer captures low-level image features such as edges and textures. Following
Conv 1, the backbone employs two separable convolutional layers, Conv 2 1 and Conv 2 2, as implemented
in the MobileNet’s architecture [5]. These convolutions are a type of factorized convolution that splits the
standard convolution into two operations: a depthwise convolution, which applies a single filter to each input
channel, and a pointwise convolution, which combines the outputs of the depthwise convolution using 1x1
convolutions. This approach significantly reduces computational cost and the number of parameters while
maintaining performance.

3.1.2 Heatmap Branch

After extracting features, the heatmap branch performs a series of upsampling and refinement operations to
generate heatmaps that localize each of the 14 keypoints on the input image. Each heatmap corresponds to a
specific keypoint and indicates the probability (after passing through a sigmoid activation) of that keypoint being
at each pixel location in the image. The upsampling layers (e.g., Conv 7a, Conv 8a, Conv 9a) progressively
increase the spatial resolution, while skip connections (e.g., adding outputs from Conv 7b, Conv 8b, and
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Conv 9b) help preserve spatial information from earlier feature maps. The final heatmaps are generated by
applying a sigmoid activation function to the outputs of the Conv 11 layer.

3.1.3 Regression Branch

Building upon the feature maps processed by the heatmap branch, the regression branch directly regresses
the precise numerical coordinates for each of the 14 keypoints. It begins with intermediate feature maps whose
gradients are stopped, ensuring that the training of the regression branch does not interfere with the optimization
of the heatmap branch. The regression branch employs a sequence of convolutional blocks (e.g., Conv 12a,
Conv 13a, and Conv 14a) that progressively refine the feature representations. Skip connections (e.g., adding
outputs from Conv 12b, Conv 13b, and Conv 14b) further enhance the information flow and maintain spatial
context.

The final regression layers, Conv 16 and Conv 17, output the coordinates and visibility scores of the
keypoints. The coordinates are produced using a dense layer followed by reshaping, while visibility scores
are computed with a sigmoid activation to represent the likelihood of each keypoint being visible. This direct
regression approach, combined with the structured refinement from earlier layers, ensures precise keypoint
predictions suitable for applications requiring high accuracy and robustness.

3.1.4 Model Outputs

The base model produces three distinct outputs during inference, corresponding to different aspects of pose
estimation:

i. Heatmap (𝐻)

The heatmap of dimensions 128 × 128 is a spatial probability distribution of keypoints, produced by the
heatmap branch. It provides a probabilistic representation of each keypoint’s position in the input image.
The dimensions of the heatmap output are:

𝐻 ∈ R𝐵×128×128×𝐾

ii. Coordinates (𝐶)

The coordinates are numerical (𝑥, 𝑦) positions of each keypoint, predicted by the regression branch. These
are the precise locations of keypoints in the image, with dimensions:

𝐶 ∈ R𝐵×𝐾×2

iii. Visibility (𝑉)

The visibility is a probability score indicating whether each keypoint is visible in the input image, also
predicted by the regression branch. The dimensions of the visibility output are:

𝑉 ∈ R𝐵×𝐾×1

where:

• 𝐵: Batch size

• 𝐾: Number of keypoints

The final output of the model is structured as:

Model(𝑥) = (𝐻,𝐶,𝑉)
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where 𝑥 is the batch of input images, and 𝐻, 𝐶, and 𝑉 represent the heatmap, coordinates, and visibility
predictions, respectively.

3.2 Training Process

The base model and the experiments will be trained with a similar strategy to the original BlazePose model
(See Appendix B.3 for details). Training the base model involved the following steps:

i. Data Preparation from the dataset

ii. Pre-training the Backbone and the Heatmap Branch with a frozen Regression Branch.

iii. Training the Regression Branch, with a frozen backbone and Heatmap Branch.

3.2.1 Data Preparation

The Leeds Sport Pose [6] (LSP) dataset was used for our training and experimentation. The data preparation
process begins with loading the LSP dataset and its annotations, followed by preprocessing the images and
generating corresponding heatmaps for training. This is to transform the annotated input data into a format
suitable for training the base model.

The annotated keypoints and visibility flags are loaded and reshaped from a .mat file using the loadmat
function and are structured as (𝑥, 𝑦, visibility) for each point. Afterwhich, the images are read, resized, and
normalized to a fixed dimension of 256 × 256 × 3. The keypoint coordinates in the annotations are adjusted
to reflect the resizing of the images to ensure accurate positions relative to the new image dimensions. For
each image, Gaussian heatmaps are generated for all keypoints. The getGaussianMap function is used to
create a 2D Gaussian distribution centered around the joint coordinates, scaled to a heatmap size of 128 × 128.
This involves calculating the usable Gaussian range within the image dimensions and overlaying the Gaussian
distribution onto the corresponding heatmap. These heatmaps provide a probabilistic representation of each
keypoint location to aid the model in learning spatial patterns for each joint during training.

After preparing the annotations, the training set is prepared as follows:

𝑥train ∈ R𝑁×256×256×3,

𝑦train =
(
heatmaptrain, coordinatestrain, visibilitytrain

)
,

heatmaptrain ∈ R𝑁×128×128×𝐾 ,

coordinatestrain ∈ R𝑁×𝐾×2,

visibilitytrain ∈ R𝑁×𝐾×1,

where 𝑁 is the number of training samples, and 𝐾 is the number of keypoints. The validation and test sets
follow the same structure as the training sets where 𝑁 would be adjusted for the number of validation or test
samples.

Data Splits: The dataset is then split into training, validation, and test sets based on predefined proportions
in the config.py file. The default parameters are 60%, 20% and 20% for training, validation and testing
respectively. The images (𝑥) and their corresponding outputs (𝑦)—including heatmaps, coordinates, and
visibility—are divided into these subsets. The training data is used to optimize the model, the validation data is
used to monitor performance and tune hyperparameters, and the test data evaluates the model’s generalization
ability.

Data Augmentation: Initially, 2000 images from the Leeds Sports Pose (LSP) dataset [6] were utilized for
training the model. This dataset was too small to train a robust model and thus we decided to perform some data
augmentation from the LSP dataset to increase training data size. We flipped the existing 2000 images and their
corresponding ground truth joint coordinates and heatmaps. This doubled our training data to 4000 images.
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(a) Training image with joints annotated (b) Flipped training image with joints annotated

Figure 4: Comparison of training images

3.2.2 Pretraining

The pretraining process focuses on training the backbone and heatmap branch of the base model to localize
keypoints accurately through the heatmaps. The objective is to train the model to learn important features
that contribute to the probability distributions of keypoint locations. This stage serves as a foundation for the
subsequent regression branch training.

The prepared training data (See Section 3.2.1), consisting of resized images 𝑥train and their corresponding
labels 𝑦train, is fed into the model. Training is performed for a predefined number of epochs with a batch size
(specified by total epoch and batch size in config.py respectively). Validation data (𝑥val, 𝑦val) is used to
monitor the model’s performance during training, providing a mechanism to detect overfitting.

The model architecture is instantiated using the BlazePose class, and it is compiled with a combination of
loss functions tailored to each output: binary cross-entropy (BCE) for the heatmap output, mean squared error
(MSE) for the coordinates, and binary cross-entropy for the visibility predictions. The optimizer used is Adam
with a learning rate of 0.001, providing a balance between stability and efficiency during training. To ensure
that only the backbone and heatmap branch are trained during this phase, layers associated with the regression
branch are frozen by setting their trainable attribute to False. This prevents the weights in the regression
branch from being updated, allowing the model to focus on refining the heatmap predictions. Additionally,
callbacks were utilized to facilitate model checkpointing and logging. The ModelCheckpoint callback saves
the model’s weights after each epoch, enabling recovery in case of interruptions and allowing evaluation of the
model at various training stages.

3.2.3 Training Regression Branch

The regression branch training focuses on refining the precise coordinates and visibility predictions of the
keypoints, leveraging the backbone and heatmap branch outputs learned during pretraining. The objective is to
predict the numerical coordinates and visibility scores of the keypoints.

The process for training the regression branch will be the same as training the backbone and heatmap branch,
except that the weights for both the backbone and heatmap branch are frozen. This means that the model is
still compiled with the same combination of loss functions (BCE, MSE, BCE) for each corresponding heatmap,
coordinates and visibility output, and optimized with an Adam optimizer. During training, the model leverages
on the features extracted by the backbone and the intermediate heatmap representation from the heatmap branch,
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using them as input to the regression branch.

4 Experimentation

4.1 Architecture Modifications

Figure 5: Initial modifications to the base architecture

The initial adaptation of the blazepose model (See Figure 3) utilizes the intermediate heatmap representation
from the Conv 9a layer in the regression branch. Hence, our initial experimentation involved modifying the
heatmap branch to improve representations and output more accurate heatmaps that correspond to each joint.

We first experimented with using a higher resolution heatmap (Conv 10a) representation and connected
it to the regression branch (See Figure 5). To accept this new input, two more convolutional blocks were
constructed (Conv MODa and Conv MODb) to maintain a similar structure to the rest of the regression branch.
The main motivation for using a higher resolution representation is to capture more details and nuances from
the probability distribution of each joint. However, this affected the training of the heatmap branch. As the skip
connection is now higher up in the upsampling branch (adding to the inputs before Conv 10a), the gradients in
the pre-training phase would also propagate to Conv 9a and Conv 8a and their upstream modules which affected
the confidence and precision negatively (See Figure 6).
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Figure 6: Heatmap comparison of predictions. Left: Initial adaptation. Right: After modifications. Lower
confidence and precision in predicting the left ankle (keypoint 6) after modifications. The brightness of the spot
indicate a higher probability for the keypoint.

To address the affected probability distribution of the output heatmaps, we also introduced transpose
convolutions within the heatmap branch as opposed to a bilinear interpolation in the up-sampling stream
(Conv 6 to Conv 11). The main motivation for this change is to learn features for more robust upsampling and
obtain more accurate heatmaps to negate the downsides of our initial modifications. As a trade-off, the model
would take longer to train during the pre-training phase. However, the introduction of transpose convolutions
had minimal to no impact on the heatmap outputs or the PCK scores. This outcome is likely attributed to the
limited robustness of the dataset, as the training set, though of high quality, comprises of 1,600 unique images,
with 200 images reserved for validation and testing each.

4.2 Heatmap Loss Modifications

We also observed that the model regularly mixed up the location of opposing joints (e.g. left ankle and right
ankle), as seen in Figure 7. We thus had the idea to experiment with adjusting the heatmap loss such that it
penalizes the region of the opposing joint more severely.

Figure 7: Example of the base model mixing up mirrored joints.

Originally, 14 heatmaps were generated for each input example for joint 𝑗 = 1..14. Each heatmap 𝐻 𝑗 was a
128x128 matrix with domain [0, 1], with increasing intensity closer to the specified joint region. This increase
in intensity followed a 2D gaussian distribution. The loss function used was Binary Cross Entropy (BCE). For
this experiment, we further generated the heatmap 𝐻 𝑗′ for each mirrored joint 𝑗 ′.

In attempt 1, we subtracted the original heatmap 𝐻 𝑗 by the negative heatmap 𝐻 𝑗′ and took the result
𝐴 = 𝐻 𝑗 −𝐻 𝑗′ as the new target heatmap. The resultant heatmap 𝐴 has domain [-1, 1], wherein intensity is close
to 1 for joint 𝑗 and close to -1 for the opposing joint 𝑗 ′, and the in-between region as well as background regions
have intensity = 0. To adjust to the new domain, we also replaced the activation of Conv 11 in the heatmap
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branch from sigmoid to tanh, and experimented with replacing the loss function by smooth L1 loss and Huber
loss. Unfortunately, the loss stagnated after 20 epochs and the train PCK score remained at 0.22.

In attempt 2, we added the negative heatmaps 𝐻 𝑗′’s as another output to Conv 11 with the same sigmoid
activation, but with a new loss function:

𝐿 =

{
− 1
𝑁

∑
𝑦𝑖 · 𝑙𝑜𝑔(1 − 𝑦𝑖) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔(𝑦𝑖), if 𝑦𝑖 > 0

0, otherwise

Here, 𝑦𝑖 represents a single pixel intensity in [0, 1] within the ground truth negative heatmap 𝐻 𝑗′ . This is
equivalent to calculating BCE(𝐻 𝑗′ , 1− �̂� 𝑗) in the region surrounding the mirrored joint 𝑗 ′. Minimizing 𝐿 means
maximizing the difference between the predicted heatmap and the heatmap corresponding to the mirrored joint.
The objective is to penalize the intensity values in the mirrored joint region specifically. We also experimented
with other loss functions (with the same negative maximizing) including smooth L1 and MSE.

The generated heatmaps are shown in Figure 8, and our test PCK was 0.437. While the inclusion of
negative heatmaps made differentiating between mirrored joints slightly clearer (see Figure 9), the predicted
pixel locations became less accurate, resulting in a worse PCK score. Our hypothesis was that an additional
output might have confused the model, and thus the extracted features became less precise.

Figure 8: Attempt 2’s generated heatmaps.

Figure 9: Attempt 2’s predictions.

4.3 Attention Might Be What We Need

Despite our initial efforts in modifying the base model and experimenting with the heatmap loss functions
(Sections 4.1 and 4.2), there were clear limits on modifying the base architecture alone. The BlazePose
architecture inherently lacks the ability to model long-range dependencies, resulting in output heatmaps that are
unaware of the positions of other keypoints, and struggle to accurately determine if a keypoint belongs to the
left or the right joint of the target.

In an effort to introduce novelty and address the limitations of convolutional networks in capturing long-
range dependencies, transformer blocks were introduced into the backbone of the model. While convolutional
layers are highly effective at extracting local spatial features, they often struggle to model relationships across
distant regions of an image. By incorporating attention mechanisms, the model would be able to better
capture global spatial relationships. This integration enhances the model’s ability to represent complex features,
complementing the strengths of the convolutional backbone. To this extent, we experimented with two different
mechanisms, transformer modules [4] and Convolutional Block Attention Modules (CBAM) [7].
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4.3.1 Transformer Modules Modifications

Figure 10: Addition of Transformer Modules to the base model

Initial iterations combined the base model’s backbone with modules from the Vision Transformer (ViT).
The backbone captures local features, while the ViT modules help model global relationships in an image.
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Their combination allows the model to effectively leverage both local feature extraction and global context
understanding. This pretraining enables the CNN to extract meaningful features from images, while the ViT
enhances these representations for improved performance in downstream tasks. The ViT modules are placed
after the backbone to ensure that the transformer has access to the complete spatial features extracted by the
backbone. This placement enables the self-attention mechanism to focus on important spatial relationships
across the entire feature map, allowing the model to learn where to focus in different regions by weighting the
importance of each spatial location. This design is also intended to be modular, allowing the CNN backbone to
utilize existing pretrained models (such as ResNet [8] or MobileNet [5]) and then be fine-tuned with the added
ViT modules. Multiple blocks of these modules can be stacked to experiment with and optimize the number of
layers that yield the best results.

The ViT modules consist of three main components:

i. Patch Embedding: Divides the input image into patches and maps each patch into a fixed-dimensional
vector representation.

ii. Positional Embedding: Adds positional information to the patches, enabling the transformer to consider
spatial relationships.

iii. Transformer Block: The core building block, which includes:

(a) Multi-Head Self-Attention (MSA): Captures dependencies between patches, enabling the model to
focus on relevant regions.

(b) Multilayer Perceptron (MLP): Processes the outputs of the MSA mechanism and enhances feature
representations.

The Vision Transformer modules (ViT) adds on to the backbone of the base model (See Figure 10). After
passing through conv 2 a and conv 2 b, the output is downsampled from 128×128 to 64×64, while maintaining
the number of channels. Reducing the spatial dimensions makes the transformer more computationally efficient.
Furthermore, higher-resolution features often preserve fine-grained details, enabling the attention mechanism to
extract richer contextual information from the patches. Patch embedding and positional embedding are applied
to divide the image into smaller patches and provide locational information for each patch. As the data passes
through the transformer layers, each patch is processed using the self-attention mechanism. This mechanism
allows the model to simultaneously consider all patches, capturing long-range dependencies. The intention is
to enable the model to identify relationships between different parts of the image, even if they are spatially
distant. To facilitate gradient flow and improve training stability, residual connections such as 𝑥 +attn output
and 𝑥 + mlp output were added. These skip connections were added to address the vanishing gradient issues
encountered during the initial iterations of this architecture.

The shape of the output from the final transformer layer is (batch size, number of patches, embed dimensions).
To integrate this output with the heatmap branch, it is reshaped from 64 × 128 to 8 × 8 × 128. Subsequently,
the output is passed through a conv trans upsampling layer, which resizes it to 64 × 64 × 128. Finally, a
1 × 1 convolutional layer with 48 filters is applied to reduce the number of channels, resulting in an output of
64 × 64 × 48.

The final output of the Transformer Modification is described as follows:

Final Output ∈ R𝐵×64×64×48,

where 𝐵 is the batch size, 64 × 64 represents the spatial dimensions of the feature map, and 48 is the number of
output channels.

In addition to the current CNN-ViT model implemented, calling it ViT2, we further optimized it. In the
Patch Embedding class, we used a convolutional layer instead of a dense layer. The convolutional layer acts as
a sliding window that directly extracts patches from the input image and embeds them into a higher-dimensional
space in one operation. A dense layer, on the other hand, would require flattening the image first, breaking
the spatial structure, and manually splitting it into patches, which is computationally more expensive and less
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intuitive. Additionally, convolutional layers share weights across the spatial dimensions of the image, making
them much more parameter-efficient than dense layers.

Another optimization we did is the portion where we reshaped the output of the ViT so that it can be
passed into the heatmap brunch. We used transposed convolution to up sample the output instead of the fixed
interpolation bilinear method. Transpose convolution will also apply convolutional operation to refine features
and generate richer representations.

4.3.2 CBAM Modules Modifications

Figure 11: Addition of CBAM Module to the base model

In a separate experiment, Convolutional Block Attention Modules [7] (CBAM) were introduced to the base
model as an alternative for the attention mechanism. Each CBAM consists of two sequential segments: the
Channel Attention (CA) and the Spatial Attention (SA). CA identifies which feature maps are most relevant,
while SA pinpoints the critical regions within those maps. The objective is to refine the feature maps, improving
their contribution to the overall model performance.

In each CBAM, CA calculates channel-wise attention weights using global average and max pooling
operations whilst retaining the input dimensions of the previous layer. These weights are passed through two
fully connected layers, where the first reduces the dimensionality using a ratio of 16 and the second restores it
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to match the original input channels. The output of CA is added to the input features to refine their importance.
This refined output is then passed through the SA module, which concatenates spatial average and max pooling
results before applying a 7x7 convolution to generate a spatial attention map. The final attention-enhanced
features from SA are used as input to the next layer.

The CBAM modules are placed afterconv3, conv5, andconv11 to target specific stages of feature processing
within the network. After conv3, CBAM refines low-level features early, ensuring subsequent layers receive
more meaningful inputs. Placing CBAM after conv5 enhances mid-level features by amplifying spatial details
and abstract patterns, critical for robust intermediate representations. Lastly, applying CBAM after conv11
focuses on optimizing high-level feature maps, improving the model’s attention to critical areas just before
generating the heatmap and regression outputs. This selective placement balances computational efficiency and
performance improvement.

5 Discussion

The model predictions for the base model (See Figure 12) are generally good for limbs that are visible and
clear. However, the model still has issues predicting keypoints with occluded limbs and (lsp 1751 in Figure
12) or noisy images with multiple people in the frame (lsp 1721 in Figure 12). More sample outputs can be
observed in Appendix C, Figure 16.

Figure 12: Sample outputs from the base model

5.1 Ablation

Model Variants PCK Score (%) Latency (ms)
Base Model 58.5 116
Architecture Modifications 39.1 290
Heatmap Loss Modifications 43.7 93
ViT Modules Modifications 41.7 117
CBAM Modules Modifications 42.0 124

Table 1: Comparison of Model Variants on PCK Score, Latency, and Total Loss

Evaluation Metrics:

i. Percentage of Correct Keypoints (PCK): This metric measures the accuracy of the model’s predicted
keypoints. A keypoint prediction is considered correct if it lies within a certain threshold distance from
the ground truth. The PCK score is computed as:

PCK =
Number of Correct Keypoints

Total Number of Keypoints
× 100
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where the threshold distance is expressed as a fraction of a reference length using the head size. The
standard threshold is 0.5, which we used.

ii. Latency: The time taken by the model to process a single image, measured in milliseconds (ms). This
metric reflects the computational efficiency of the model, making it particularly important for real-time
applications.

5.2 Limitations

Given the limited time and computational resources available for this project, we chose a dataset that was
small and manageable to enable easier experimentation and training. However, this would also become the
main limitation for our model and experiments. Though the LSP dataset have high quality annotations with
unique poses for different sports, the size of the dataset (2000 samples) was not sufficient in training more
complex models. There is a larger version of the LSP dataset, named LSPET, with 10,000 samples annotated by
Amazon Mechanical Turk workers. However, this dataset was lower in quality than the original LSP set as some
keypoints were either plotted incorrectly with extreme values (See Figure 13) or, to account for occluded limbs
(the dataset was not clear on the labels provided). As a result, the LSPET set heavily affecting the pre-training
process and the negative effects were cascaded into the regression branch.

Figure 13: Samples of extreme values in the LSPET dataset

The traditional pain points in human pose estimation, including occluded body parts, blending of opposing
joints, and blending of body parts into the background, remain. Occlusion occurs when parts of the body are
obscured by other objects, other body parts, or external factors such as clothing. Our experimentations in using
transformer models, attention blocks, and heatmap loss variations had aimed to establish relations between
different body parts, producing a basis from which the location of occluded joints could be predicted. However,
future research is needed to further alleviate this problem.

In addition, while our data augmentation was successful, it might be simplistic and might not capture the full
variability of real-world poses and conditions, such as lighting, motion blur, or camera angles. Furthermore,
unseen poses or top-down angles posed a challenge to our current model. More advanced augmentation
techniques, including rotation, scaling, synthetic data generation, and noise generation, could enhance training
diversity.
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5.3 Future Work

Future work could capitalize on more recent works with higher quality and larger volume data, such as the
JRDB-Pose [9] and H3WB [10] datasets, to have fairer ablations for the modifications made. These newer and
larger datasets are also comprehensive with different human poses to help the model generalize better.

Further, more experiments can be done to modify the base model to incorporate other modalities of data.
Recent works have introduced datasets with diverse perspectives such as a dataset with fisheye perspectives [11]
or a dataset with omnidirectional top-view images [12]. These additional modalities can enable more novel
modifications to attain better accuracy for keypoint predictions.

We can also work on more data augmentation techniques whilst utilizing a GPU that could handle the large
amounts of data to be used as input. In particular, one of the methods we plan to explore is adversarial augmen-
tation, such that we can leverage on the power of GAN to generate rarer poses and imbalanced demographics
(skin tones). In addition, incorporating temporal information to enhance pose estimation in video sequences
is another avenue we wish to figure out. With RNNs and more sophisticated transformer networks, the model
would better capture motion dynamics and ensure consistency across frames. Combining this additional tem-
poral information with the spatial relations in our transformer architecture additions might be able to extract
more precise features in the human body.

These future directions could help address existing limitations, such as motion blur and occlusion of body
part, which is important in our goal to predict the location of joints and infer the correctness of users’ poses
during real-time exercises.

5.4 Conclusion

Overall, the adapted Base Model demonstrated reliable keypoint prediction under the given time and
computational constraints, but faced challenges with occlusions and complex backgrounds. Addressing these
issues requires richer and more diverse datasets, data augmentation techniques, and methods that handle
occlusions and temporal information more effectively. Incorporating these improvements would further improve
keypoint predictions, and bring the system closer to fulfilling its original aim as outlined in the introduction:
providing precise, actionable feedback to promote healthier exercise practices. By enhancing the model’s
robustness and accuracy, we can better support the United Nations Sustainable Development Goal of ensuring
healthy lives and well-being, ultimately enabling more reliable posture evaluation and exercise guidance for
users.

5.5 Source code

The code for the different models as well as instructions on training, testing and processing can be found on
the GitHub repository.
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A Contributions & Acknowledgements

Member Name Student ID Contributions
Wang Jun Long Ryan 1005923

i. Implemented and trained the base model (Sec-
tion 3).

ii. Experimented on different architecture modifi-
cations (Section 4.1).

iii. Experimented with CBAM modules (Section
4.3.2).

iv. Wrote and edited the entire report.

Vy Dinh 1006124

i. Implemented and trained the base model (Sec-
tion 3).

ii. Initial coding of the CBAM layer based on [13].

iii. Experimented with negative heatmap modifica-
tion (Section 4.2).

Sarang Nirwan 1006403

i. Implemented and trained the base model (Sec-
tion 3).

ii. Implemented video processing logic

iii. Worked on the report introduction and problem
background

iv. Github code refactoring

Rachel Leow 1006071

i. Implemented and trained the base model (Sec-
tion 3).

ii. Implemented and researched ViT modules
(Section 4.3.1).

iii. Experimented with optimizing the ViT modules
(Section 4.3.1).

Table 2: Summary of workload and contributions for team members.

This report was written and prepared by the aforementioned team members. To enhance the clarity and
quality of the document, Large Language Models (LLMs) were utilized for refining the formatting and correcting
linguistic errors, including grammar and spelling.

We extend our gratitude to Associate Professor Ngai-Man Cheung for his valuable guidance and advice
throughout the course of this project. Additionally, we would like to acknowledge GitHub user alishsuper for
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their implementation of the BlazePose model, which significantly contributed to the construction of our base
model.

B Blazepose Model

BlazePose [2] is a lightweight, real-time pose estimation model developed by Google Research, designed
to detect and track human body keypoints (See Figure 14) in videos or images. It identifies 33 key landmarks,
including those for the face, torso, arms, and legs, enabling precise full-body motion tracking. This model is
well-suited for mobile and web applications, achieving high performance on devices with limited computational
resources. BlazePose leverages a two-stage pipeline: first, detecting the region of interest (ROI) to focus on
the subject, and second, refining keypoint localization using a neural network. It has been applied in fitness,
augmented reality, and healthcare for tasks like exercise tracking, posture correction, and interactive experiences.

Figure 14: Keypoints predicted in the original work

B.1 Dataset Preparation

The authors of BlazePose constructed the training dataset by combining Google’s in-house resources with
publicly available data. The dataset comprised 60,000 images depicting one or a few individuals in common
poses and an additional 25,000 images featuring fitness-related activities. Each image was meticulously
annotated with 33 body keypoints, ensuring that the dataset provided high-quality ground truth for training.
The annotation process followed a topology consistent with BlazeFace, BlazePalm, and MS COCO datasets,
allowing seamless compatibility with related tasks and datasets.

To enhance the model’s robustness, the authors employed significant data augmentation techniques. These
included simulating occlusions by overlaying random rectangles filled with varying colors to mimic scenarios
where body parts were partially or entirely obscured. Additional augmentations involved scaling, rotation,
and translation adjustments, ensuring that the model could generalize effectively across diverse poses and
environments.

The authors further refined the dataset by filtering it to include only images where the entire person was
visible or where critical keypoints, such as hips and shoulders, could be confidently annotated. This refinement

20



step ensured that the model received consistent and reliable training data. Moreover, a visibility classifier was
incorporated into the training process to identify whether specific keypoints were visible or occluded. This
feature allowed the model to maintain accuracy under challenging conditions, such as when only the upper body
was visible or when most of the subject’s body was outside the frame.

B.2 Model Architecture

Figure 15: BlazePose model architecture.

BlazePose adopts a hybrid methodology that integrates heatmaps, offsets, and regression for pose estimation.
During training, a lightweight encoder-decoder network produces heatmaps that act as guidance for detecting
body keypoints. These heatmaps serve as a form of supervision, enabling the regression encoder to estimate the
precise coordinates of the keypoints. To enhance efficiency during inference, the heatmap layers are removed,
allowing the model to perform effectively on devices with limited computational resources.

B.3 Training in Phases

To refine the network further, the authors incorporated skip connections to ensure a balance between
extracting high-level and low-level features. Gradients were intentionally blocked at specific layers to prevent
conflicts between heatmap-driven and regression-based learning. This approach found that the heatmap quality
and the accuracy of the coordinates greatly improved. Hence, we adopted a similar training strategy in our
project to achieve better results. The regression encoder of the original model was designed as a compact
module which we try to maintain in our implementation as well.

In the original work, alignment and augmentation processes also played a vital role in preparing the training
data. The images were preprocessed to center the subject, aligning the midpoint between the hips at the center
of the frame. Rotational adjustments ensured that the line connecting the shoulders and hips was vertically
oriented. Additionally, scaling was applied to fit all keypoints within a square bounding box. Augmentations,
including small variations in scale and position, simulated natural body movements to improve the model’s
robustness. The authors found that these strategies contributed to the model’s ability to generalize effectively
across various poses while maintaining accuracy during inference. Inspired by this, we also implemented
various alignment and augmentation pipelines into this project.
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C Sample Outputs

Figure 16: Sample outputs for base model.
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