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Executive Summary

This report outlines the development of D’Noise, a multi-modal speech-capturing device
designed to reduce the risk of missing out critical information from speech, particularly for se-
curity personnel operating in noisy environments such as airports and malls. Recognizing that
current commercial solutions rely heavily on cloud-based processing and lack robust noise sup-
pression, D’Noise was conceived as a portable, on-device system capable of audio enhancement
with noise suppression, playback, and real-time transcription.

To achieve this, the team established three important design specifications – playback an
enhanced speech of the target with noise suppression, on-device computation, and real-time
transcription capabilities in a discreet prototype. To achieve these specifications, measurable
hardware and software objectives were established. Hardware objectives included capturing
speech from within conversational distances (3 meters), maintaining a discreet and lightweight
form factor under 1.25kg, ensuring at least three hours of continuous battery life, and max-
imizing comfort during extended wear. Software objectives targeted playback latency below
200 milliseconds, a perceptible improvement in Signal-to-Noise Ratio (SNR), transcription ac-
curacy with Word Error Rate (WER) below 30%, and full support for on-device processing
without reliance on internet connectivity. These metrics guided the technical exploration and
prototype development documented in the Methodology section.

The system design involved three core components: audio capture, audio processing, and
audio transcription. In the development process, the audio capture module, various microphone
configurations and options were weighed to optimize for further speech capturing distances. A
shotgun microphone was selected for its directionality and far reach. In audio processing, both
static filters and deep learning-based denoisers were tested. RNNoise was selected for its low-
latency performance on CPU, enabling real-time speech enhancement while conserving com-
putational resources. For transcription, Whisper was fine-tuned on over 500 hours of Singlish
data from the IMDA National Speech Corpus, significantly reducing WER and enabling near
real-time text output on a custom handheld device.

Quantitative and qualitative evaluations documented in the Discussion demonstrated that
D’Noise successfully fulfilled all objectives. In noisy environments, the system maintained
intelligible playback beyond conversation distances – up to 4.5 meters, and 6 meters in quiet
conditions. Battery stress tests confirmed a minimum runtime of 4 hours, while temperatures of
the satchel housing D’Noise remained below 35.7◦C. The system weighed a total of 1.186kg,
thus meeting the sub-1.25kg form factor specifications, which is comparable to the lightest lap-
tops in the industry. From a software standpoint, the average playback latency for denoising
is just 0.755ms, with significant gains in speech intelligibility that can handle both static and
dynamic noises. Whisper, after fine-tuning, achieved an average WER of 15.2% (in ∼72dB am-
bient noise) with an average latency of 0.33ms, achieving near real-time operation in noisy en-
vironments. All processes are entirely on-device using the Jetson Orin Nano, making D’Noise

independent of cloud services and their recurring costs, which distinguishes this prototype from
current solutions.

Ultimately, D’Noise addresses critical gaps of existing commercial solutions by deliver-
ing an on-device, low-latency system designed specifically for local operational requirements.
D’Noise can suppress dynamic background noise while maintaining real-time transcription
performance, establishing a new benchmark for wearable speech-capturing devices in security
applications, offering capabilities not currently available in any existing market offerings.
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1 Introduction

In noisy environments—such as airports, shopping malls, and condominiums—security per-
sonnel and staff consistently encounter significant challenges in maintaining clear communica-
tion (Alnuman & Altaweel, 2020). This is due to adverse conditions (such as unclear, disfluent
or environmental noise) that can degrade the intelligibility of the target speech (Mattys et al.,
2012). Thereby, increasing the risk of losing critical information during conversations, which
would delay prompt and effective responses in dangerous situations (Keller et al., 2017). These
conditions underscore the need for a device that can reliably capture and enhance speech in
noisy settings.

Problem Statement How might we support security personnel in Singapore by developing a
speech-capturing device capable of enhancing, playing back, and transcribing audio in real time
within noisy environments, thereby reducing the risk of missing critical information?

Design Specifications To address this problem, the design of the prototype should be able to

• Playback an enhanced speech of the target and suppress noise (improve SNR).

• Offer near real-time transcription with low word error rates and display it.

• Support on-device computation in a discreet and portable prototype.

Objectives Measurable Metrics

Hardware

(I) Effective Operational Range Capture speech beyond typical conversational
distances (3m radius) in noisy environments.

(II) Discreet and Compact Design Unobtrusive form factor within 1.25kg.

(III) Extended Battery Life Continuous operation for at least 3 hours1.

(IV) Comfort and Wearability Comfortable throughout 3 hours1.

Software

(I) Minimal Latency Enhanced and denoised audio playback latency
within 200ms2.

(II) Enhanced Audio Playback Improve noisy speech for clearer speech play-
back.

(III) Near Real-Time Transcription Transcription with a Word Error Rate within
30% and latency within 1s.

(IV) On-Device Computation Perform all processes on-device.

Table 1: Summary of hardware and software objectives with measurable outcomes to fulfill the
design specifications.

1The average number of hours before a security personnel takes a break as specified by the industry mentor.
2The acceptable latency range for noise suppression within industry standards (Y. Yang et al., 2023).
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2 Background

2.1 Hardware Literature Review

Motivated by the hardware objectives (I – IV), as outlined in the introduction (Section 1), the
team considered hardware components to enable the software modules whilst keeping the pro-
totype discreet and comfortable. The components include microphone technologies, processing
units, and power solutions, and their detailed comparisons are documented in Appendix B.

2.1.1 Microphones

(a) Visualization for the Uniform Linear Array (ULA) microphones
(b) Visualization for the Uniform
Circular Array (UCA) microphones

Figure 1: Side-by-side comparison of ULA and UCA microphones.

Directional microphones (e.g., shotgun, electret condenser) offer high sensitivity and noise
isolation (Popescu, 2023), but their larger form factors often hinder compact and wearable de-
signs. Alternatively, Micro Electro-Mechanical System (MEMS) microphones are small in size,
have low power consumption, and support microphone arrays. These arrays enable advanced
signal processing such as beamforming and noise suppression, enhancing speech clarity in noisy
settings.

2.1.2 Processing Units

Local processing of speech signals, including tasks involving Large Language Models
(LLMs) or Automatic Speech Recognition (ASR), demands significant computational resources
(Georgescu et al., 2021). Single-board computers like the NVIDIA Jetson Nano or Orin Nano
provide a balance of compactness, energy efficiency, and hardware accelerators, making them
well suited for on-device speech processing (NVIDIA, n.d.).

2.1.3 Power Solutions

Wearable devices require batteries that offer high energy density to minimize both size and
weight while ensuring adequate runtime. Lithium-ion (Li-Ion) and lithium-polymer (Li-Po)
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batteries are commonly employed for this purpose (Manthiram, 2017; Townsend et al., 2020).
That said, they necessitate robust battery management systems to maintain safety standards and
prolong the overall battery lifespan.

2.2 Software Literature Review

Motivated by the software objectives (I – IV), as outlined in the introduction (Section 1),
the team researched various software techniques to process the audio from its initial input to
transcribing into natural language (text).

2.2.1 Audio Capture

Direction of Arrival (DOA) Algorithms

GCC-PHAT (Knapp
& Carter, 1976)

Estimates the Time Difference of Arrival (TDOA) between micro-
phone signals by applying a phase transform to normalize magni-
tudes, then computes cross-correlation. It is computationally effi-
cient but prone to reduced accuracy in reverberant settings.

MUSIC (Stoica &
Nehorai, 1989)

Decomposes the signal covariance matrix into signal and noise sub-
spaces. Peaks in the noise subspace indicate the DOA. This method
provides high resolution for closely spaced sources but demands
significant computational resources and is sensitive to modeling
errors.

Beamforming (BF) Algorithms

MVDR (Guo et al.,
2012)

Minimizes power from all non-target directions while preserving a
distortionless response for the desired signal. It requires accurate
covariance matrix estimation and may become sensitive to rapid
noise-level fluctuations.

GSC (Moonen &
Proudler, 2000)

Extends MVDR by adding a noise cancellation module to handle
sidelobe interference. Its modular design offers flexibility in dy-
namic environments, yet it can suffer from signal cancellation if
the blocking matrix does not perfectly eliminate the target speech.

Table 2: Summary of Literature Review on DOA and Beamforming Algorithms

From the initial audio input stage, the team considered Direction of Arrival (DOA) esti-
mation algorithms, which are critical for identifying the direction of incoming sound sources,
especially in multi-source environments. Accurate determination of the target speech angle
allows the system to effectively suppress interference originating from other directions. Two
promising DOA algorithms explored are Generalized Cross-Correlation with Phase Transform
(GCC-PHAT) and Multiple Signal Classification (MUSIC). Following DOA estimation, Beam-
forming (BF) algorithms were also considered to enhance the target speech signal by selec-
tively filtering signals from the desired direction while attenuating interference from others.
The beamforming algorithms assessed include a recent implementation of Minimum Variance
Distortionless Response (MVDR) and the Generalized Sidelobe Canceller (GSC).
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2.2.2 Noise Suppression (NS)

Static Methods

Low-Pass Filter Passes lower-frequency components and suppresses higher fre-
quencies, which reduces high-pitched noise while retaining most
of the speech signal.

Wiener Filter Minimizes the mean squared error between the noisy input and the
estimated clean output through the noise and signal spectrum.

Median Filter Replaces each sample with the median of its neighboring values,
which reduces impulse noises.

Spectral Gating
(Y. Yang et al., 2023)

Operates in the frequency domain by applying a threshold to the
signal’s power spectrum, attenuating noise components below the
threshold while preserving dominant frequencies.

Deep Learning Methods

RNNoise (Valin, 2018) A lightweight RNN-based model designed for real-time applica-
tions. It estimates ideal band gains and incorporates pitch filtering
for harmonics, requiring only 40 Mflops—making it well-suited
for deployment on embedded devices like the Jetson Orin Nano
(NVIDIA, n.d.).

Facebook Denoiser
(Defossez et al., 2020)

A full-band real-time speech enhancement model that operates
directly on waveform input. It leverages convolutional encoder-
decoder architectures with skip connections and has demonstrated
strong performance on real-world noise.

DeepFilterNet
(Schröter et al., 2022)

A compact neural network designed for speech denoising with a
focus on low-latency processing. It uses temporal convolutional
layers and can run efficiently on both CPU and GPU, making it
suitable for resource-constrained real-time systems.

Neural Beamforming
(Gu et al., 2023)

Uses neural networks to enhance speech from multi-channel audio
from microphone arrays by converting signals into time-frequency
representations and estimating spatial filters.

Guided Speech
Enhancement (GSE)
Network (Y. Yang
et al., 2023)

Combines classical beamforming with a deep neural network by
taking both the raw input and the beamformed output as inputs,
allowing the model to learn and further suppress the residual noise
from beamforming.

Table 3: Summary of Noise Suppression Algorithms from Literature

To suppress noise, deep learning and algorithmic approaches were explored as an additional
processing stage after initial processing (Section 3.1). Table 3 summarizes the literature review
of the methods explored in the design-thinking process. Given that D’Noise is meant to be
portable, noise suppression methods have to be robust and dynamic. The static methods re-
viewed specialize in static noises (such as white noise), which made them insufficient to deal
with dynamic noises (such as chatter) in realistic environments. Thus, the team considered deep
learning methods to circumvent this limitation of the static methods.
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2.2.3 Audio Speech Recognition (ASR)

ASR Models

Kaldi (Povey et al.,
n.d.)

A widely adopted speech recognition toolkit known for its high ac-
curacy and flexible architecture supporting deep neural networks.
It offers comprehensive tools for feature extraction and acous-
tic modeling. However, it is complex to configure and resource-
intensive, making it less suited for real-time or on-device use.

Wav2Vec 2.0 (Baevski
et al., 2020)

A self-supervised model developed by Facebook AI Research that
learns representations directly from raw audio. It achieves strong
results in low-resource conditions and supports fine-tuning for
domain-specific applications. Its high inference cost, however, lim-
its its practical use in low-latency or embedded systems.

Whisper (Radford
et al., 2022)

OpenAI’s robust end-to-end model trained on a diverse corpus for
multilingual and noisy speech recognition. It is highly resilient to
background noise and accent variability, aligning well with real-
world deployment scenarios. The trade-off lies in its model size,
which still presents challenges for efficient real-time execution.

Fine-Tuning Methods (Sanchit, 2022)

Targeted Layer
Training

Only decoder and projection layers are updated, while the encoder
remains frozen. This reduces training time and mitigates catas-
trophic forgetting, allowing efficient domain adaptation with lim-
ited data.

Whisper Normalizer A text pre-processing step that standardizes punctuation, removes
hesitations, and maps numbers to their spoken forms. This helps
align reference transcriptions with Whisper’s decoding targets dur-
ing training.

Timestamp
Supervision

Fine-tuning on datasets with precise word-level or segment-level
timestamps enables better alignment and segmentation, improving
diarization and real-time streaming performance.

Data Sampling and
Resampling

Ensures class balance across training steps by over-sampling un-
derrepresented classes or domains. This prevents overfitting to fre-
quent speakers or acoustic conditions in small corpora.

Table 4: Summary of the Literature Review for Speech Recognition Models and Fine-Tuning
Methods

After processing the audio, the team explored various open-source ASR solutions to address
the real-time transcription requirement (Objective (III)). Existing methods are summarized in
Table 4. To further tailor these ASR models for Singaporean security personnel, an important
technique to consider would be fine-tuning. Fine-tuning improves transcription accuracy by
adapting pre-trained models to task-specific data distributions—particularly important when
facing domain shifts such as local English accents (Singlish), background noise, or spontaneous
speech. Key techniques used in fine-tuning are also summarized in Table 4.
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2.3 Market Research

Product TranscribeGlass Pocketalk Sudio T2

Visualization

Description

A wearable device that
attaches to glasses, pro-
viding real-time captions
(TranscribeGlass, n.d.).

A handheld two-way
voice translator for
real-time translation
(Pocketalk, n.d.).

True wireless earbuds
that utilize beamform-
ing for noise suppression
(Sudio, n.d.).

Advantages

Affordable alternative to
expensive AR devices;
lightweight and comfort-
able design.

Accurate translations;
large intuitive touch-
screen; noise-canceling
microphones

Comfortable and cus-
tomized fit; drivers for
clear audio; quick charg-
ing.

Limitations

Relies on external
speech-to-text apps; may
not be suitable for all
types of hearing loss;
potential latency issues
in transcription.

Requires internet con-
nection for translations;
struggles with colloquial
language and regional
dialects; relatively high
cost.

Active noise cancellation
is average; touch con-
trols can be less intu-
itive than physical but-
tons; lacks support for
advanced audio codecs.

Table 5: Market Research of Competing Products

Existing market products primarily comprise real-time transcription glasses, handheld tran-
scription devices, and directional earbuds. Although each offers distinct advantages, they share
common shortcomings, including reliance on cloud-based processing, inadequate noise sup-
pression, and limited adaptability to noisy environments.

Reliance on Cloud-Based Processing: Many devices depend on cloud services for
speech recognition and processing, leading to ongoing subscription costs and security expenses
for encryption and data protection. Moreover, security officers often operate in locations with
inconsistent or unreliable internet access, making cloud-based solutions impractical in the field.

Inadequate Noise Suppression and Environmental Adaptability: Existing products
often lack advanced noise suppression to handle environmental noise or cross-talk, impeding
clear audio capture. They also fail to adapt to direction-specific speech requirements, such
as focusing on a single speaker in a crowded space. This insufficient directional sensitivity
compromises the reliability and clarity of recorded audio in demanding operational settings.
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3 Methodology

Figure 2: Overview of the workflow of D’Noise.

The overall system (Figure 2) is segmented into three main components - audio capture,
processing, and transcription. The audio is captured through the input device and processed by
the denoising module and transcription model in parallel. The denoised audio is then played
back and the transcription displayed. This section details the design thinking and experimental
process before the team arrived at their final prototype. The resultant design of the prototype
would be reflected in the Discussion (Section 4).

3.1 Audio Capture

The audio capturing component of the prototype is responsible for taking in raw input wave-
forms with a focus on hardware objectives (I) and (II) - the device’s operational range and a
discreet and compact design.

3.1.1 Standard Microphones

MEMS microphones are miniature devices that integrate mechanical elements and elec-
tronic circuitry on a single silicon chip, offering high reliability, low power consumption, and
consistent performance over a broad frequency range (typically 20 Hz–20 kHz). Their compact
form factor makes them ideal for array-based beamforming applications, and their operational
range in practical environments can extend from a few centimeters to several meters, depending
on the array design, ambient noise levels, and signal processing strategies.

3.1.2 Microphone Arrays

MATLAB simulations were conducted to determine the microphone’s suitability for the
team’s prototype. The team considered the beam patterns and Signal-to-Noise Ratios (SNR) in
the simulations and their impact on the prototype’s operational distance. This also involved im-
plementing a Delay-and-Sum beamforming technique to enhance sound from specific directions
while suppressing noise.
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Microphone Array Structures

Uniform Linear
Array (ULA)
(Figure 1a)

Comparisons of Broadside and End-Fire configurations (Figure 12)
showed that End-Fire provides a single dominant main lobe and
fewer side lobes, resulting in superior directional focus. Increas-
ing the number of microphones within a fixed array length fur-
ther sharpened the main lobe, thereby improving noise suppres-
sion. Optimizing array length also helped reduce redundant noise
(Appendix A, Figure 13 and 14).

Uniform Circular
Array (UCA)
(Figure 1b)

Simulations varying microphone count and diameter (Appendix A,
Figure 15 and 16) indicated that an increased diameter significantly
improves the beam pattern, creating a more focused cardioid shape.
This makes UCAs well-suited for noisy environments and demon-
strates robustness even with fewer microphones, offering flexibility
in design and addressing market constraints.

Table 6: Summary of Observations on Microphone Array Structures

Operational Range: Simulations (Appendix A, Figure 17) were performed by plot-
ting SNR against distance under typical noise levels (approximately 90 dBA). ULA perfor-
mance varied with microphone count and array length, showing shorter operational distances
for smaller arrays. By contrast, UCAs delivered a superior range as the number of microphones
increased, making it a strong candidate for the microphone in D’Noise.

3.1.3 Shotgun Microphones

Shotgun microphones, also known as interference tube microphones, are highly directional
devices designed to capture sound from a narrow forward-facing region while minimizing off-
axis noise. Their long, slotted tube shape uses phase cancellation to attenuate sound arriving
from the sides, making them well-suited for applications that require precise audio capture over
distances, which is a very important design specification in this D’Noise. While shotgun mi-
crophones excel at isolating the desired source in environments with significant ambient noise,
they may still exhibit reduced performance when sound sources arrive from multiple directions
or when there is substantial room reverberation. In light of these tradeoffs, an extensive test with
the other components of D’Noise is detailed in the Discussion (Section 4.1) to more concretely
ascertain the viability of Shotgun Microphones.

3.2 Audio Processing

3.2.1 Single Board Computers

Computer: In order to handle the computational demands of the denoising and transcrip-
tion modules, various single-board computers (SBCs) were evaluated based on computational
performance, power efficiency, size, and cost (Appendix B, Figure 19). The Jetson Orin Nano
was the strongest contender for its performance-to-power ratio to enable low-latency speech
processing and transcription while keeping power consumption moderate. Utilizing this edge
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device for the prototype’s processing requirements would eliminate the dependence on cloud
services and maintain operational capabilities without an internet connection – an advantage
over other market products that is quintessential for security guards who may not have stable
internet connections.

Power System: To fuel the Jetson Orin Nano, a 4-series Li-Ion battery pack (14.8 V,
7000 mAh) was selected and regulated down to 12 V. This configuration runs the device for
approximately six hours (half a typical 12-hour security shift in Singapore) to balance between
operational requirements and manageable weight. Li-Ion batteries were preferred over LiPo
(Appendix B, Figure 21) due to their robustness and safety under mechanical stress (Detailed
calculations in Appendix B, Figure 20).

(a) First Iteration (b) Second Iteration (c) Third Iteration (Final Design)

Figure 3: Design iterations of the computing hardware for audio processing and transcription.

Design Iterations: The development of housing the computing hardware (SBC and the
power system) underwent three major iterations, with each version addressing critical limita-
tions identified during testing and user feedback. Figure 3 above illustrates this progression.

Iteration 1 (Figure 3a) prioritized enabling local speech denoising and transcription using the
Jetson Orin Nano due to its favorable performance-to-power ratio and compact form factor
(176 g). The Jetson was initially powered by a 7500 mAh 4S Li-Po battery (590 g), regulated
to 12 V using a buck converter. While this configuration achieved 6 hours of continuous opera-
tion—half of a typical security guard’s shift—it exhibited critical drawbacks. Battery swapping
was cumbersome, the Li-Po cell posed mechanical safety concerns, and the 766 g system (ex-
cluding bag and frame) resulted in poor weight distribution, limiting long-term wearability.

Iteration 2 (Figure 3b) addressed the power-safety and modularity concerns of Iteration 1.
The Li-Po battery was replaced with three 21700 Li-Ion cells, housed in steel casings for im-
proved durability and intuitive hot-swapping. The team integrated the Waveshare Uninterrupt-
ible Power Supply (UPS) for Jetson Orin Nano, which allowed seamless switching between
AC and battery power and ensured overcharge/discharge protection. A new internal frame was
designed to accommodate the increased thickness of the Jetson–UPS–battery assembly. This
reduced the weight of the device and improved the modularity of the design. Yet, there were
thermal concerns for this device as it would be stored in a satchel bag (Appendix E, Figure 34)
for discreetness.

Iteration 3 (Figure 3c) naturally focused on the thermal concerns from iteration 2 and fur-
ther improved user experience. Passive thermal management was implemented by creating
air intake and exhaust channels within the satchel zippers and seams. The hardware module
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was redesigned to be removable as a single slide-out unit to enable easy battery replacement
and debugging. A front-facing interface panel was introduced with labeled ports and buttons,
and an OLED display was added to show live power metrics. This iteration formed the final
satchel-based prototype, satisfying desirable traits like portability, low-latency operation, and
discreetness in the design specifications for Singaporean Security Personnel.

3.2.2 Noise Suppression and Speech Enhancement

With the computing hardware from the previous section, the team explored possible de-
noising methods to fulfill the software objectives (Table 1) to denoise and playback enhanced
speech.

Method ∆SNR (dB) PESQ ∆STOI Latency (ms)

Static Methods

Wiener Filter +0.18 1.129 +0.001 0.301

Median Filter +0.20 1.115 -0.005 0.096

Low Pass Filter +0.12 1.167 +0.000 0.486

Spectral Gating (Sainburg
et al., 2020)

+1.26 1.095 +0.018 44.104

Deep Learning Models

RNNoise (CPU) (Valin,
2018)

+0.90 1.224 -0.114 0.755

Facebook Denoiser (CPU)
(Defossez et al., 2020)

+1.42 1.044 -0.172 155.062

Facebook Denoiser (GPU) +1.42 1.044 -0.172 65.387

DeepFilterNet (CPU)
(Schröter et al., 2022)

+1.41 1.075 -0.033 76.457

DeepFilterNet (GPU) +1.41 1.075 -0.033 52.843

Table 7: Comparison of speech denoising methods using change in SNR, PESQ, ∆STOI, and
average latency per 10 ms chunk. Each metric is the average computed over the test set.

As a baseline, the team compared various static (filter-based) algorithms. The results are
summarized in Table 7, where the deep learning models significantly outperformed the static
methods in SNR and PESQ. As the test set consists of conversational local English from IMDA’s
National Speech Corpus (IMDA, 2019), it posed significant challenges for the filter-based meth-
ods to adapt to a dynamic range of noises. In view of this limitation, deep learning methods
were considered for a more robust and effective solution to suppress noise.

Deep Learning Methods: To overcome the limitations of static methods, the team evalu-
ated several deep learning models capable of adapting to dynamic noise conditions. Among the
models tested—RNNoise, Facebook Denoiser, and DeepFilterNet—trade-offs were observed
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between signal quality, perceptual clarity, and processing latency. Facebook Denoiser offered
the highest noise suppression but incurred significant latency, while RNNoise provided the best
balance of perceptual quality and real-time performance. For this reason and its low computa-
tional demands, RNNoise was selected for the prototype. Table 7 details the in-depth compar-
isons.

Deep Learning with Microphone Arrays: Given the promising theoretical effectiveness
of microphone arrays (Appendix A), considering models that leverage on these microphones
was an intuitive step towards a cohesive prototype design. Neural Beamforming and GSE Net-
work are two models that utilized the microphone arrays. However, the use of unique hardware
also meant a lack of realistic data to train these models. Hence, the team initiated an extensive
data collection effort (Appendix D.1) with the microphone arrays to overcome this challenge.
The training process is detailed in Appendix D.

(a) Average SNR improvements of different de-
noising methods.

(b) Average WER of ASR outputs for different de-
noising methods (Whisper-small).

Figure 4: Comparison of denoising performance based on (left) Word Error Rate (WER) and
(right) Signal-to-Noise Ratio (SNR). Full sized figures in Appendix D.3.2.

Limitations: Despite the efforts in integrating deep learning models that utilize micro-
phone arrays into the system, the team found that beamforming-based approaches did not yield
noticeably better results compared to models using single-channel inputs. Additionally, the
team discovered that SNR improvements as a metric were not informative, as a higher value
does not translate into better intelligibility. For instance, the Facebook Denoiser had the highest
SNR improvement, but the output was garbled noise. In an attempt to address this, the team
considered WER (Figure 27) by an ASR model as an alternative metric for comparison. Surpris-
ingly, the WER for the denoising methods were higher than the noisy inputs. The team reasoned
that this result lies in issues depending on ASR models for evaluation (Appendix D.3.2). Fi-
nally, to reconcile with these results, the team conducted human evaluation (Section 4.1) to
investigate the denoising capabilities (considering distance and intelligibility of the outputs) of
the various models. This resulted in RNNoise being chosen for its high perceptual quality with
low latency and hardware requirements – only requiring a CPU for its computation, which frees
up GPU resources for the transcriptions.

3.3 Audio Transcription

After processing the audio (Section 3.2), the resultant enhanced speech is passed to an Au-
tomatic Speech Recognition (ASR) model for transcription. It is then displayed on a commu-
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nication device to achieve near real-time transcription (Software Objective IV). In this section,
the team documents in detail their design thinking process towards the final prototype.

3.3.1 Display Design

Throughout the iterative design process, the team continuously revisited the project require-
ments to ensure alignment with user needs and system objectives. Regular consultations with
industry mentors also provided valuable insights into the optimal form factor for practical de-
ployment. Ultimately, a handheld device—shown in Figure 7 and conceptually similar to the
PocketTalk identified in the team’s market research (Table 5)—was selected. This form fac-
tor was determined to be the most viable, effectively meeting all defined functional and non-
functional requirements.

Figure 5: Iteration 1 of the Display
Device

Iteration 1: The team designed a glasses-based
prototype (Figure 5) as inspired by the Transcribe-
Glass in the team’s market research (Table 5). This
design was intended to make it convenient for the
users to read the transcribed text without the need
to alternate their gaze between a separate hand-held
screen and the target speaker. In the initial testing of
this design, the glasses felt uncomfortable and heavy
with a bulky mounting structure that impeded pe-
ripheral vision. Further, this iteration was not dis-
creet, which was a key requirement from the indus-
try partners.

Figure 6: Iteration 2 of the Display
Device

Iteration 2: Following feedback and initial er-
gonomic testing of Iteration 1, the team proceeded
to develop a headset-based design aimed at im-
proving weight distribution for enhanced comfort.
To maintain optimal microphone performance, the
frame was enclosed within an acoustically transpar-
ent cap. However, to position the transparent OLED
display at a readable distance for the user, the screen
had to extend outward from the cap. This signif-
icantly compromised the discretion of the device,
which conflicted with one of the key non-functional
requirements. As such, the headset design, while
more ergonomic, was ultimately deemed unsuitable
due to its high visual profile.
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Figure 7: Iteration 3 of the Display
Device

Iteration 3: The team arrived at their current de-
sign - a handheld device. It features a compact form
factor, is lightweight and discreet, and small enough
to fit in the user’s palm or a pants pocket. The tran-
scribed text appears on an LCD screen and has a bat-
tery life of approximately 4.5 hours. Charging the
device is straightforward, thanks to a standard USB-
C charging port, allowing easy implementation into
existing setups. It is also user-friendly, with zero
learning curve required. Features such as the sim-
ple on/off switch, battery percentage display, con-
trast adjustment, and built-in troubleshooting ports
further enhance its usability.

Limitations of Handheld Device: While the handheld device successfully fulfilled all
defined project requirements, several limitations remain in terms of usability and discretion. As
the device must be held in the user’s hand, it requires the user to look away from their sur-
roundings to view the transcription, potentially disrupting situational awareness during critical
interactions. In addition, the current design is still out of place when compared to a mobile
phone. Furthermore, the existing screen size limits the amount of information displayed at
once. Increasing the display size could improve readability and allow users to view more tran-
scribed content without scrolling. A potential improved version of this product based on these
limitations and the user validation survey (Section 4.4) is detailed in this report’s Future Work
(Section 4.5).

3.3.2 Audio Speech Recognition (ASR) Models

To transcribe audio to text, the team evaluated three lightweight, offline-capable ASR mod-
els—Kaldi, wav2vec 2.0, and Whisper. Table 8 compares the Normalized Word Error Rate
(WER) across five different datasets, demonstrating that Whisper significantly outperformed
the other models. Based on these results, Whisper was selected for fine-tuning to better support
the target users—security personnel in Singapore.

Dataset Kaldi wav2vec 2.0 Whisper
Conversational AI 64.2 36.3 19.9
Phone Call 69.9 31.0 16.6
Meeting 44.0 27.4 13.9
Earnings Call 65.8 28.1 9.7
Video 47.6 23.3 8.9

Table 8: Normalized WER (%) across different ASR models and datasets (Seagraves, 2022).
Lower WER indicates better performance.

To contextualize D’Noise for local security personnel, the team fine-tuned the
whisper-base model on a noise-augmented Singlish databaset derived from the IMDA Na-
tional Speech Corpus (IMDA, 2019). Crowd noise recordings averaging 72 dB were added
to the dataset at varying Signal-to-Noise Ratios (SNRs) to improve robustness. The resulting
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model achieved a Word Error Rate (WER) of 15.28% on 40 minutes of noisy Singlish test
audio—representing a 53.58% improvement over whisper-base.en and a 94.0% improve-
ment over the multilingual whisper-base model (Table 9). Details of the initial fine-tuning
process are documented in Appendix D.4.

Model Variants Fine-tuned Whisper-base Whisper-base.en Whisper-base
Normalized WER (%) 15.28% 32.91% 254.61%

Table 9: Comparison of Normalized WER across variants of Whisper after fine-tuning. Lower
WER indicates better transcription performance.

Real-time Transcription: The team used a Sliding Window approach to perform real-
time transcription to continuously refine the transcription by using audio buffers (context win-
dows). To find the best balance between performance and latency, a simulation on a 14-minute
continuous test audio consisting of crowd noise at varying SNR ratios was conducted. For the
best balance between latency and performance (Table 10), a 15-second context window was
selected for real-time transcription.

Context Window Size (s) 5 10 15 20 25 30 Pauses
WER (%) 23.5 21.19 19.48 20.74 19.44 19.99 24
Latency 0.14 0.23 0.33 0.43 0.53 0.62 –

Table 10: Word-error rate (WER) and latency for different context-window sizes. Lower
values are better; the best result for each metric is shown in bold.

3.3.3 Limitations of Denoising for ASR

While denoising methods are typically used to enhance speech quality and intelligibility,
the team’s experiments revealed an important limitation when such processed outputs are used
for automatic speech recognition (ASR). Specifically, the team observed that using denoised
outputs as inputs to ASR models led to a degradation in performance, quantified by their Word
Error Rate (WER). Using the Whisper-small model as the team’s ASR system, the team found
that denoised audio inputs often resulted in higher WER compared to their corresponding noisy
versions (Apppendix D.3.2, Figure 27). In some cases, even advanced deep learning-based
denoisers such as the Facebook Denoiser or DeepFilterNet produced transcriptions that were
less accurate than those derived from the unprocessed noisy input.

The team reasoned that this performance drop stems from artifacts or distortions introduced
during denoising or the upsampling process, which shift the input distribution away from what
the ASR model was trained on. To address this limitation, the team downsampled the denoised
audio instead of upsampling to fit the high-quality audio of the shotgun microphone. As a result,
there were significant gains in the WER as demonstrated in Figure 9. Additionally, the team
conducted further experimentation and analysis on the capabilities of denoising to ascertain
the validity of the denoising component. The details of this evaluation are documented in the
Discussion (Section 4.1).
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4 Discussion

This section details the quantitative and qualitative results of the overall prototype as well
as the potential limitations for each component – Audio Capture, Audio Processing, Audio
Transcription. From the observations and results, the team shows that it satisfies the hardware
and software objectives (outlined in Section 1) and provides evidence that D’Noise is effective
in addressing the problem.

4.1 Operational Distance

The team conducted experiments with human evaluation (Appendix F) on the denoising
capabilities of D’Noise. The experiments serve as an indicator for the intelligibility of the
playback audio in realistic environments. In the setup (Figure 8), three evaluators (receiver), at
a fixed position, would hear the audio playback from D’Noise in capturing the Target’s speech.
After which, the receiver would indicate the interpretability of the captured speech based on
their ability to transcribe the target speech. In the setup, only one source of interference was
played in each session at different locations, I1, I2, and I3. The results of this experiment are
detailed in Table 11 below.

This evaluation was conducted in an indoor corridor and at an open space near the SUTD
canteen with average ambient sounds of 57dB and 72dB, respectively. These ambient volumes
are naturally occurring sounds and are close to industry standards (60dB, 70dB, 80dB) (Mc-
Cuaig, 2024) for noise isolation.

Figure 8: Setup for human evaluation to measure audibility to distance

Discreetness: Achieving similar performance at other interference positions is an impor-
tant insight as it enables the security personnel to be even more discreet, without being in the
line of sight of the target speaker. This directly fulfills one of the main design specification1

(Section 1) for this prototype.

Distance: Achieving an approximate interpretable maximum distance of 5.5m and 4m
for quiet and noisy environments, respectively, directly fulfills another design specification2 of
D’Noise. This range goes beyond conversational distances and the original target of a 3m-4m
radius.
1Hardware Objective (II): A discreet design that is unobtrusive.
2Hardware and Software Objective (I): Enhanced playback within 200ms latency and within conversational dis-
tances (3m-4m).
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Market Comparisons: D’Noise outperforms current market offerings by deliver-
ing clear audio capture up to ≈ 5.5m in quiet environments and ≈ 4m in noisy condi-
tions—significantly beyond the typical 2–3 m range reported for comparable devices3 like the
Sudio T2 earbuds (Sudio, n.d.). Moreover, a key feature of D’Noise is its ability to suppress
dynamic noise, filling a critical gap in existing Active Noise Cancellation (ANC) implemen-
tations that specialize in filtering static noises (McCuaig, 2024; Morantz, 2024). This makes
D’Noise superior in both the operational distance and noise suppression capabilities over ex-
isting market products.

3 m 3.5 m 4 m 4.5 m 5 m 5.5 m 6 m

I1 @ 57 dB ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓× ✓×× ×××
I2 @ 57 dB ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓×
I3 @ 57 dB ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓× ✓××

I1 @ 72 dB ✓✓✓ ✓✓× ✓×× ✓×× ××× ××× ×××
I2 @ 72 dB ✓✓✓ ✓✓✓ ✓✓× ✓✓× ××× ××× ×××
I3 @ 72 dB ✓✓✓ ✓✓✓ ✓✓× ✓×× ××× ××× ×××

Table 11: Human evaluation of D’Noise interpretability at different distances and two average
ambient sound levels (57 dB, 72 dB). Tick (✓) indicates that the evaluator was able to hear and
transcribe the information, while cross (×) indicates they were not. Boxed results indicate the

furthest interpretable distance by majority voting.

Next, the team considered the transcription capabilities of the fully integrated D’Noise in
various locations with the results detailed in Figure 9. The setup of this test is similar to Figure 8,
with a focus on transcription instead of the intelligibility of the speech. With a WER of at most
15.2% within conversational distance in noisy environments, D’Noise has successfully fulfilled
Software objective (III) as detailed in Table 1.

Figure 9: Transcription Word Error Rates (WER) in different settings and distances

3See Market Research in Section 2.3.
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4.2 Operational Lifespan

Figure 10: Stress testing setup to measure the battery lifespan and temperature of the device

To further validate the operational capabilities of D’Noise in helping security staff, the team
conducted a stress test on the device. The motivation behind this test is to serve as an indicator
for the prototype’s ability to maintain its function continuously throughout the average number
of hours before a break (3 hours). Figure 37 details the results of the stress test on D’Noise.

Jetson Nano Battery: The Jetson Orin Nano is the computational workhorse of D’Noise
that all other processes, from denoising to transcription, are dependent on. Thus, a thorough test
on the worst-case scenario for the Jetson Orin Nano is necessary to gauge how long D’Noise

could last. The tests were set up to continuously play a recording of Singaporean local English
from various sources, which would invoke the denoising and transcription features. The device
was tested exactly from 90% battery and was allowed to drain fully (until D’Noise was forced
to shut down). From this testing, the team observed that the device lasted around 4 hours
and 27 minutes, beyond the necessary shift. Given that the device was utilizing all features
throughout the test, this duration serves as an indicative lower bound of the operational lifespan
of D’Noise. Thereby, fulfilling the hardware requirement to last an entire security personnel’s
average number of hours before a break (3 hours).

Raspberry Pi Battery: The Raspberry Pi (RPi) is a supplementary computational device
that connects to the handheld display, which visualizes the transcriptions from Whisper. The
testing of this device is also necessary to assess the operational capacity of the transcription
feature. From Appendix F Figure 38, the team also observed that the RPi could last 4 hours
and 30 minutes before shutting off, which matches the Jetson Orin Nano’s battery lifespan.

Temperature and Comfort: A crucial metric that the team explored was the temperature
of the satchel that houses D’Noise. The warmth of the bag would directly affect the comfort
in using this device, which affects the viability of D’Noise for security personnel, especially
in the warm weather of Singapore. From Appendix F Figure 39, the temperature of the satchel
was not noticeably warmer than the ambient environment, reaching a maximum difference of
5◦C, capped at 35.7◦C. This validates the D’Noise in being a comfortable device, suitable for
a prolonged operation if the situation necessitates as such.
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4.3 Sustainability

The team developed and designed D’Noise while taking into account the 17 Sustainable
Development Goals (SDG) outlined by the United Nations, where applicable. To demonstrate
these considerations, the design of the device employs a modular layout by mounting the battery
pack, shotgun microphone, and Jetson Orin Nano on separate brackets secured with standard
screws. This approach extends service life and reduces e-waste by letting technicians replace
any component independently, aligning with resource efficiency and infrastructure resilience
(SDG 9) (United Nations, 2015d).

During development, the team used a low-infill 3D-printing setup with recycled PLA to re-
duce filament mass and energy consumption. Additionally, the battery relies on user-replaceable
21700 Li-Ion cells, so the entire unit is not discarded when the power source degrades. The team
also ordered components from the same source at the same time as far as possible, to minimize
the carbon footprint during the transportation of these components. These practices directly
support responsible consumption and production (SDG 12) (United Nations, 2015b).

Lastly, providing a short disassembly guide and labeling all parts with polymer codes and
e-waste symbols in the technical documentation is a future improvement the team could make.
This labeling route helps users recycle worn components while retaining functional modules,
contributing to sustainable cities (SDG 11) (United Nations, 2015a) and safeguarding health by
minimizing hazardous disposal (SDG 3) (United Nations, 2015c).

4.4 Security Staff Validation Survey

The team conducted a user survey approved by SUTD’s Institutional Review Board to fur-
ther validate D’Noise from the intended users (security personnel). This survey interviewed
two SUTD security guards to gather operationally relevant feedback. The test was conducted in
indoor conditions and feedback was collected through interviews and structured response forms
(Appendix G). Their evaluations are summarized in Table 12.

Figure 11: Security Staff
Validation test route.

Validation Procedure:
The user validation was conducted in SUTD’s Building 1,
Level 6, along the designated patrol route shown in Figure 11.
Security personnel were instructed to walk the route while
interacting with the system under realistic noise and move-
ment conditions. Evaluation criteria included system respon-
siveness (latency), transcription clarity, weight comfort, and
usability of the interface components. Participants provided
structured feedback after each patrol session.

Overall, this validation survey indicated the satisfactory performance of D’Noise for Sin-
gaporean security personnel as it addresses the primary design specifications of playing back an
enhanced speech with real-time transcription and on-device computation whilst being discreet
and portable. Thereby, placing D’Noise in a unique position that no existing market product
could fill.
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Form Factor Participants positively evaluated the comfort and form factor of the device. It
was described as comfortable and lightweight, preferred as a sling bag rather
than attached at the hip, which was perceived as unstable. This successfully
met Hardware Objective (II) concerning comfort and wearability, even with
its non-standard format. Also, concerns were raised regarding discretion
due to some visible wiring. This helped the team design the final prototype
iteration for the Jetson Orin nano (Section 3.2, Figure 3c).

Performance Security personnel commended clear speech playback up to 3 meters in envi-
ronments with approximately 55 dB ambient noise, though performance no-
tably declined beyond this range or with increased background noise. These
findings match experimental results detailed in Section 4.1, thus meeting
Hardware and Software Objective (I). Device integration into routine work-
flows was straightforward, with battery swapping and charging understood
without formal training. However, tech-averse participants felt hesitant han-
dling modular components, suggesting future iterations incorporate more in-
tuitive physical cues or sealed connectors.

Ease of Use Feedback on the user interface was mixed; participants found the OLED
display bulky and showed a strong preference for mobile phone integration.
While functionality targets were technically achieved, transitioning to a
mobile interface is recommended to align better with market preferences
and enhance user satisfaction.

Table 12: Summary of the User Validation Survey and Interview

Potential Improvements: In the interview, the team also asked the security guards for
suggestions to further improve D’Noise. In summary, the participants suggested integrating
features such as recording and playback capabilities for post-event reviews, adopting mobile
interfaces for usability, strengthening data security through locking mechanisms, and adding
weather-proofing or ruggedness for outdoor use. In light of this, the team proposed potential
future directions to further improve the prototype in Section 4.5.

4.5 Future Work

Mobile Integration: As recommended by a security personnel during the user validation
survey (Section 4.4) and informed by the limitations in Section 3.3.1, a potential direction for
the display device would be to integrate the transcription into a mobile phone as illustrated
in Appendix E.4, Figure 35. This iteration looks toward a design that could blend in more
seamlessly into real-world scenarios, reducing unnecessary attention.

Audio Recording: As advised by the security personnel, implementing the ability to record
and playback enhanced audio would greatly aid them in post-incident reviews. Thereby, further
reducing the risk of losing out critical information that could jeopardize public safety.

Data Security: Another advantage of integrating the transcription into a mobile phone
would be the use of privacy mechanisms such as two-factor authentication or biometric authen-
tication, such as FaceID in iPhones. This would further secure the transcribed and the suggested
audio recording data.
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5 Conclusion

D’Noise presents a compelling entry in reducing the risk of missing out critical information
by filling in gaps of existing market products – suppressing static and dynamic noise, enhanc-
ing and transcribing speech in adversarial settings. Throughout the development of D’Noise,
the team customized the solution to help security personnel in Singapore and has effectively
addressed the problem statement and design specifications (Table 13) outlined in the Intro-
duction. Future directions (Section 4.5) can further optimize D’Noise for discreetness and its
operational capabilities. As a result, this project successfully addressed a critical problem for
security personnel and provided a foundation to further aid them in ensuring safety in Singapore

Objectives D’Noise Features

Hardware

(I) Effective Operational Range
Capture speech within conversational dis-
tances (3m radius) in noisy environments.

✓An operational range up to 4.5m in noisy en-
vironments and 6m in quiet environments (Sec-
tion 4.1).

(II) Discreet and Compact Design
Unobtrusive form factor within 1.25 kg.

✓A total weight of 0.936kg (main body) +
0.25kg (handheld device) = 1.186kg

(III) Extended Battery Life
Continuous operation for at least 3 hours4.

✓A lower bound battery life of 4 hours in ex-
treme conditions (Section 4.2).

(IV) Comfort and Wearability
Comfortable to wear throughout 3 hours4.

✓A comfortable satchel bag that only reaches a
maximum temperature of 35.7◦C (Section 4.2).

Software

(I) Minimal Latency
Enhanced and denoised audio playback la-
tency within 200 ms5.

✓An average latency of 0.755ms for noise sup-
pression and enhanced audio playback (Sec-
tion 3.2, Table 7).

(II) Enhanced Audio Playback
Improve baseline signal-to-noise ratio (SNR)
for clearer speech playback.

✓Human evaluations (Section 4.1, Table 11) in-
dicated more intelligible speech compared to
the noisy input.

(III) Near Real-Time Transcription
Transcription with a WER within 30% and a
latency within 1s.

✓Average WER of 15.2% (Section 4.1) with an
average latency of 0.33ms (Section 3.3.2, Ta-
ble 10).

(IV) On-Device Computation
Perform all processes on-device.

✓All processing modules are performed on the
device without cloud services.

Table 13: Specified project objectives and the outcomes achieved by D’Noise.

4The average number of hours before a security personnel takes a break as specified by the industry mentor.
5The acceptable latency range for noise suppression within industry standards (yang˙guided˙2023.)
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A Simulations

Figure 12: Broadside vs End-Fire Uniform Linear Array Simulation

Figure 13: ULA 2D and 3D Beam Pattern Comparisons at 9cm Total Length with Varying
Number of Microphones

24



Figure 14: ULA 2D and 3D Beam Pattern Comparisons with 7 Microphones and Varying Array
Length

Figure 15: UCA 2D and 3D Beam Pattern Comparison at 9cm Diameter and Varying Number
of Microphones with a Center Microphone
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Figure 16: UCA 2D and 3D Beam Pattern Comparison at 7 Microphones (with Center Micro-
phone) and Varying Diameter

Figure 17: Microphone Array Configurations vs Operational Range
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B Hardware Considerations

Figure 18: A Comparison Between Microphone Arrays

The team conducted a comprehensive market analysis of MEMS microphone arrays, evalu-
ating both linear and circular configurations. Products like the vicDIVA Beamforming Eval-
uation Kit and the VocalFusion 4-MIC XVF3500 Development Kit include integrated DSP
systems that add significant bulk, limiting their suitability for compact designs. Meanwhile,
arrays such as the ReSpeaker 4-Mic Linear Array Kit and 2-Mic Pi HAT, designed primarily for
Raspberry Pi platforms, rely on GPIO pin interfaces, making integration with non-Raspberry Pi
SBCs more complex.

Based on MATLAB simulations (Appendix A), circular microphone arrays were selected as
the optimal configuration, narrowing the options to the UMA-8 v2 USB Microphone Array and
the ReSpeaker Mic V2. Both were evaluated for effective range, beamforming performance,
noise suppression capabilities, and ease of integration with SBCs. While the UMA-8 excelled
in noise suppression, the ReSpeaker Mic V2 outperformed in Direction of Arrival (DOA) and
beamforming. Both offered a similar effective range of 3–5 meters. Ultimately, the ReSpeaker
Mic V2 was chosen for its ability to stream both raw and processed audio outputs, meeting the
project’s requirements. at the same time, which is essential for the denoising approach chosen
for this project.
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Figure 19: A Comparison Between Single Board Computers

The Jetson Orin Nano was selected as the SBC for its excellent performance-to-power trade-
off, offering 40 Trillions of Operations Per Second (TOPS) of computational power to ensure
low-latency speech processing and transcription while maintaining moderate power consump-
tion (10-15 W). This balance allows for extended operation using a smaller battery, making it
well-suited for integration into a wearable device. Other SBCs, such as the Raspberry Pi 5 with
an AI accelerator and the BeagleBone AI-64, were evaluated based on factors like computa-
tional performance, power efficiency, size, and cost. While some lower-power devices were
considered, they lacked sufficient processing capabilities to meet real-time requirements. Ad-
ditionally, the team explored offloading audio processing and transcription to the cloud, which
could allow for a smaller, lighter device. However, local processing on the Jetson Orin Nano
was ultimately chosen for its ability to reduce overall costs, simplify system architecture, and
eliminate the dependency on a stable network connection.

Figure 20: A Comparison Between Lithium-Based Batteries
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For a wearable device, a Lithium-based battery is desirable due to its high energy density
relative to other battery types (Li et al., 2024). Although Lithium Polymer (LiPo) batteries offer
slightly higher energy density and versatile form factors for integration into wearables, Lithium
Ion (Li-Ion) batteries were ultimately selected for this application because of their superior
resistance to mechanical stress. Furthermore, the Jetson Orin Nano’s maximum current draw of
1.25 A at 12 V does not require LiPo-grade high discharge rates, making Li-Ion batteries more
than sufficient.

Battery Sizing: Standard security officer shifts in Singapore last for 12 hours (Today
Online, 2018). To reduce the frequency of battery swaps to a single swap while keeping overall
weight manageable, the device was designed to operate independently for 6 hours. Assuming
the Jetson Orin Nano consumes 12 W on average and the buck converter exhibits an efficiency
of 90%, the power draw from the battery is calculated as:

Power Draw from Battery (W) =
Power Consumed by Jetson Orin (W)

Buck Converter Efficiency
=

12
0.9

≈ 13.33W.

The required battery capacity to run for 6 hours at 14.8 V is:

Capacity (mAh) =
13.33W×6h

14.8V
×1000 ≈ 5392mAh.

Adding a safety margin of 30% leads to:

5392mAh×1.3 ≈ 7009.6mAh.

Consequently, the battery chosen for this application is a 4-Series 2-Parallel Li-Ion pack
with a capacity of 7000 mAh, providing sufficient runtime while maintaining a compact form
factor.

Figure 21: Connection Diagram for LiPo Battery Power Systems

The operation of the Jetson Orin Nano via a Li-Ion battery poses some safety issues, which
are addressed with the following components.
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Battery Management System (BMS): A Battery Management System (BMS) prevents the
battery from over-discharging, which causes permanent damage and a potential fire or explosion
hazard. Additionally, it protects the rest of the electronics from excessively high current.

Step Down (Buck) Converter: While the selected Lithium-Polymer battery has a nominal
voltage of 14.8V, its voltage will vary from 16.8V (full charge) to 12.0V (cutoff voltage) as it
discharges during use. A step-down converter can take in this varying voltage and provide a
steady voltage of 12.0V to the Jetson Orin Nano.
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C Software Considerations

C.1 Generative Error Correction (GER)

To improve the performance of the Automatic Speech Recognition (ASR) models, incorpo-
rating Generative Error Correction (GER) (C.-H. H. Yang et al., 2024) modules is a possible
direction to improve transcription accuracy, especially in extremely noisy scenarios where tra-
ditional denoising methods fall short. GER refines ASR outputs by leveraging the linguistic
capabilities of generative models to correct transcription errors. Initial research considered two
GER approaches—RobustGER and LipGER—to help improve ASR outputs.

RobustGER (Hu et al., 2024) improves transcription accuracy by performing language-
space denoising. ASR models are modified to generate N-best plausible transcriptions, and
language-space noise embeddings are calculated from the inconsistencies among these hypothe-
ses. Greater discrepancies represent noisier conditions. Sentence-level embeddings summarize
overall noise across hypotheses, while token-level embeddings address fine-grained variations.
These embeddings, derived using Sentence Transformers (SBERT) and alignment algorithms,
are input to a Large Language Model, which is instructed to ”subtract” the calculated noise
embeddings to refine the transcriptions based on the N-best outputs. LipGER framework en-
hances transcription accuracy by integrating audio inputs with visual embeddings derived from
lip movements (Ghosh et al., 2024). This multimodal approach is particularly effective in noisy
environments where audio signals alone may be inadequate, making it a promising solution for
challenging acoustic conditions. However, this method introduces another modality to the sys-
tem which would have cascading implications on latency, computational demands, and power
draw.

For all evaluations and experiments, the Word Error Rate is calculated as such:

WER =
number of substitutions+number of insertions+number of deletions

length of reference transcription
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D Deep Learning Models

D.1 Dataset

D.1.1 National Speech Corpus (IMDA, 2019)

The dataset used in this capstone project includes speech recordings drawn primarily from
the IMDA National Speech Corpus (NSC), which forms the foundation for training and eval-
uating the many of the deep learning models we used. The IMDA NSC is a curated speech
dataset developed by Singapore’s Infocomm Media Development Authority to support research
and development in local speech technology. It consists of high-quality audio recordings of
Singaporean English, reflecting a variety of accents and speaking styles that are representative
of the local population.

The corpus includes recordings from multiple speakers across different demographics from
Singapore, and the content spans a range of topics including everyday conversations, scripted
phrases, and read passages. All recordings were captured in acoustically controlled environ-
ments using high-fidelity microphones to ensure minimal background noise, making the dataset
particularly suitable as a clean speech reference in speech enhancement tasks.

The IMDA NSC was selected not only for its linguistic relevance but also for its high
signal-to-noise ratio, which allows for precise simulation of corrupted speech when overlaid
with synthetic noise. This makes it well-suited for use in training models to perform su-
pervised speech denoising. The segmented clean speech data was stored in the directory
prepared data/clean speech and used as ground truth in all denoising experiments and
training of the GSE Network, DeepFilterNet and also in the finetuning of Whisper.

D.1.2 Data Collection with Microphone Arrays

Figure 22: The Head and Torso Simulator from the Guided Speech Enhancement Network
(Y. Yang et al., 2023)
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Figure 23: The Head and Torso Simulator setup in SUTD for the data collection initiative.

The team also initiated an in depth data collection effort to train the deep learning model that
uses the microphone arrays as mentioned in Section 3.2.2. This data collection effort follows
the Head and Torso Simulator setup (Figure 22) with a similar distribution of the data collection
parameters from the authors of the Guided Speech Enhancement Network (Y. Yang et al., 2023).
Instead of 8 loud speakers for the interference, the team used 5 instead with an equal angular
spread from the torso at 3 metres from the recording device (Figure 23). In total, the team
collected around 20 hours of data using the specialized hardware – ReSpeaker Microphone V2
– to train and validate the GSENetwork and the DeepFilterNet.

D.2 Guided Speech Enhancement Network (Y. Yang et al., 2023)

Figure 24: System diagram for the Guided Speech Enhancement Network. GSENetwork takes
in both the beamformer outputs and the raw inputs.

The Guided Speech Enhancement Network (GSE Network) combines a beamformer with
a deep learning model to enhance speech by reducing noise and interfering signals. It takes in
both the raw microphone audio and beamformer output as inputs to improve spatial filtering,
denoising, and dereverberation 24. Using a causal U-Net architecture 24, the GSE Network is
able to operate in real-time to reduce noise and enhance the target speech.
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Figure 25: Architecture of GSENetwork as defined in the paper.

D.2.1 Training Preamble

The training script was optimized to utilize Apple Metal Performance Shaders (MPS) when
available, defaulting to CPU otherwise. Dependencies required for MPS-accelerated PyTorch
were specified in gsenet requirements.txt. The training was executed on an M2 Max Mac-
Book Pro, completing in approximately 4 hours. The process begins by setting a random seed
of 13 for reproducibility across PyTorch, NumPy, and Python’s random module. If CUDA is
available, its seed is also initialized. The training configuration employs a batch size of 32 and
a learning rate of 0.001. The detailed training implementation can be found in this GitHub
Repository.

D.2.2 GSENetwork Training Procedure

The training procedure for the Guided Speech Enhancement Network (GSENet) was imple-
mented to support both local and cloud-based training, specifically leveraging Google Cloud
Platform (GCP) for scalable compute capabilities.

Local training was first performed on a personal M2 Max MacBook Pro. The training script
train.py was executed with arguments specifying the dataset path, batch size, number of
epochs, and the directory for saving model checkpoints. The model was trained over 20 epochs
with checkpoint files saved periodically to disk. This allowed fast iteration during the early
phases of model development.

For more scalable training on larger datasets, the workflow was migrated to Google Cloud.
A Google Cloud Storage (GCS) bucket was first created to host the self-collected training data.
The local dataset was uploaded to this bucket using the gsutil utility with multi-threaded trans-
fer enabled via the -m flag to accelerate the upload process. A Google Compute Engine instance
was then provisioned with GPU support to handle the training workload. After initializing the
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instance and connecting via SSH, the training repository was cloned and all dependencies were
installed. The dataset was accessed either by downloading it from the GCS bucket or by mount-
ing the bucket using gcsfuse for direct access without local duplication.

The training script was then executed on the virtual machine, using similar arguments as
before but updated with the correct paths reflecting either local or mounted GCS data directo-
ries. Checkpoints were stored locally on the VM, with the option to upload them back to the
GCS bucket for persistence and portability. Upon completion of training, the model’s perfor-
mance was evaluated using the held-out test dataset. The best model weights were saved to
gsenet final model.pth, resulting in a model file approximately seven megabytes in size.
This file encapsulates the learned weights and biases, and is suitable for downstream deploy-
ment or fine-tuning.

D.3 Multi-Channel RNNoise

Figure 26: Architecture of Multi-Channel RNNoise.

The Multi-Channel RNNoise architecture builds upon the original single-channel RNNoise
model by extending it to process four audio channels. This modification was inspired by beam-
forming algorithms and technologies, which make use of multi-channel microphone arrays to
enable directional audio capture. The network aims to leverage spatial cues—particularly phase
differences between microphones—for improved noise suppression and speech enhancement.
Instead of predicting clean waveforms directly, the network estimates a frame-wise gain mask
in the spectral domain, which is then applied to the noisy signal. This approach is efficient
for low-latency applications (as in our use case, which requires real-time audio playback), as
it operates in the frequency domain and avoids complex signal reconstruction. The architec-
ture combines principles from traditional speech enhancement with recurrent neural networks,
leveraging multi-channel input to better filter target speech from background noise. By doing
so, we aim to improve the model’s robustness to challenging acoustic conditions such as noisy
or multi-speaker environments.

D.3.1 Multi-Channel RNNoise Training and Results

The model architecture began with a simple extension of RNNoise—consisting of a few
GRU layers followed by fully connected layers—adapted to process all four channels of audio
input from a microphone array. After computing the gain mask, this was applied to the spectral
representation of the input signal. As development progressed, we experimented with different
architectural variants, including increased depth, skip connections, and other modifications. We
also evaluated the effect of different loss functions: mean squared error (MSE) loss, and short-
time Fourier transform (STFT) loss. The latter computes the error in the time-frequency domain,
offering better perceptual alignment with audio signals and sensitivity to both magnitude and
phase differences. Lastly, we also tried adding the beamformed output from the microphone
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array as an additional input (much like in the GSE network in the section before) to the neural
network.

Despite these variations in architecture and loss functions, our multi-channel models un-
fortunately did not outperform the baseline single-channel RNNoise. The results suggest that
more advanced or complex spatial modeling or architectural changes may be necessary to fully
leverage multi-channel input for enhanced performance in directional audio capture.

D.3.2 Limitations in Evaluating Noise Suppression

Figure 27: Average WER of ASR outputs for different denoising methods (Whisper-small)

During the evaluation for the denoising deep learning models, a major challenge that the
team encountered was the selection of a quantifiable metric that can effectively describe how
well each method has performed. Initially, the team considered SNR improvements to quantify
the performance. However, this metric was not representative for real time use cases as the
Facebook Denoiser outputs garbled intelligible noise but obtained the highest SNR improve-
ment. To address this, we considered the use of average WER by routing the denoised outputs
to a Whisper model. The intention is to convert the denoising capabilities into a quantifiable
metric - WER - to evaluate the models. Unexpectedly, the WER for the denoising methods was
higher than the noisy input.

While further investigations could be conducted to address this, the team focused on explor-
ing other methods to compare the different models instead due to time and resource constraints.
Thus, human evaluations in Section 4.2 was conducted to better determine which denoising
method produces the highest quality speech – with comparisons between the noisy input and
the latency involved.

36



Figure 28: Average SNR improvement for different denoising methods

Insight: This led us to the conclusion that our initial assumption – the denoised outputs
would be easier for the whisper model to transcribe – is not necessarily true. As such, we
concluded that the best way to measure a model’s ability to suppress noise is through human
evaluations as detailed in Section 4.1.

D.4 Whisper Finetuning

Open-source ASR models such as Kaldi, Wav2Vec 2.0, and Whisper were evaluated for per-
formance, scalability, and community support. The Whisper model was ultimately selected for
the project due to its strong multilingual pretraining, robustness to background noise, and ac-
tive ecosystem for low-resource language adaptation. Among its variants—tiny, base, small,
and medium—the base model was primarily used for deployment and fine-tuning, offering
a balance between computational feasibility and transcription performance in noisy environ-
ments such as airports and shopping malls. Compared to Kaldi and Wav2Vec 2.0, Whisper
demonstrated superior transcription accuracy, with relative improvements of 45.18% and 69%,
respectively.

To tailor the prototype toward the target users—security personnel operating in Singa-
pore—the Whisper model was fine-tuned to transcribe Singlish, a colloquial form of English
commonly spoken in the region. Singlish presents unique challenges for ASR systems due to
its informal structure, localized vocabulary, and non-standard grammar, which are not well-
represented in most pretraining corpora. To address this, the conversational portion of the Na-
tional Speech Corpus (NSC), curated by the Infocomm Media Development Authority (IMDA),
was used for fine-tuning (Appendix D.1). This dataset was selected for its close linguistic align-
ment with the target domain and was hosted using HuggingFace Datasets for scalable access
during training.
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The fine-tuning process involved adapting the Whisper model’s parameters to capture the
nuances of Singlish speech while retaining the benefits of multilingual pretraining. The model
was trained to minimize transcription error using the NSC conversational data, with training
and evaluation loss curves provided in Figure 29 and Figure 30. The fine-tuned model achieved
a 66% improvement in normalized Word Error Rate (WER) compared to the Whisper English-
only baseline, and a 93% improvement relative to the unadapted Whisper model.

Figure 29: Training Loss Curve during Finetuning

Figure 30: Evaluationn Loss Curve during FineTuning

In addition to performance gains, training was carefully configured to mitigate overfitting
and improve generalization to real-world speech. This was done by tuning the frequency at
which the model’s parameters were updated, effectively addressing the generalization gap by
increasing data variation across training iterations. Through this process, Whisper was effec-
tively adapted to meet the linguistic demands of the deployment environment, enhancing its
suitability for real-time transcription tasks in noisy, multilingual, and informal communication
scenarios encountered by front-line security staff.
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The team also initially customized Whisper by team fine-tuning the model specifically for
Singlish, a colloquial English variant unique to Singapore, characterized by distinct grammar,
vocabulary, and pronunciation patterns. For this initial finetuning process, the dataset was not
augmented with additional noise and reverberations unlike the process documented in Sec-
tion 3.3 A conversational subset of the IMDA National Speech Corpus (IMDA, 2019) com-
prising 530 hours of training and 132 hours of testing data was used. We achieved a 66%
improvement over the English-only version of the Whisper model and a 93% improvement
over the multilingual base model (Table 14).

Model Variants Fine-tuned Whisper-base Whisper-base.en Whisper-base
Normalized WER (%) 12.87% 37.77% 192.86%

Table 14: Comparison of Normalized Word Error Rate (WER) across Whisper model variants
after fine-tuning on Singlish. Lower WER indicates better transcription performance.
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E Overall Design Iterations

E.1 Main Body First Iteration

This prototype consisted of a Raspberry Pi Zero 2W powered by a 3.7V, 2000 mAh Li-
Po battery through a PowerBoost 1000 Basic module, and incorporated a transparent OLED
display. The ReSpeaker microphone array was originally placed at the hat area to capture audio
input.

Consequently, the system underwent a design evolution, replacing the ReSpeaker array with
a single or shotgun microphone to free space on the hat, and relocating the Raspberry Pi, booster,
and battery from the glasses to the hat area. This revised layout used adjustable head straps to
achieve greater comfort and incorporated a rotating arm (extending approximately 10 cm from
the hat) to position the transparent OLED directly in front of the user’s eye.

(a) First iteration of housing the Jetson Nano and
the Battery (b) 3D Render of the first iteration

Figure 31: Side-by-side comparison of hardware housing iterations.

As discussed in Section 3.2, there were various limitations to the first iteration which helped
inform subsequent designs. Namely, the team further improved on the weight distribution, heat,
and discreetness of the device.
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E.2 Main Body Second Iteration

Figure 32: Second iteration of the main body

To address the limitations identified in Iteration 1, the team transitioned to a modular and
safer power architecture. The 4S Li-Po battery was replaced with three 4800 mAh 21700 Li-Ion
cells, each enclosed in a protective steel casing. This change significantly improved both the
physical robustness of the system and the ease of battery replacement. The cylindrical batteries
could be swapped intuitively, much like conventional AA batteries, thereby enhancing field
usability.

For power management, the Waveshare Uninterruptible Power Supply (UPS) for the Jetson
Orin Nano was adopted. This module was selected over a custom Battery Management System
(BMS) due to its integrated feature set, which includes:

• Hot-swapping between AC and battery power,

• Overcharge and over-discharge protection,

• Internal charging via standard AC wall plug.

The UPS mounts directly beneath the Jetson Orin Nano, maintaining the same horizon-
tal footprint while increasing the vertical stack height. As a result, a new internal frame was
designed to accommodate the combined Jetson, UPS, and battery compartments efficiently.

With the improved modular power system in place, the operational runtime requirement was
revised to 3 hours. This decision aligned with the availability of natural breaks during a typical
shift, such as meal times, during which batteries could be replaced. The updated configuration
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not only ensured adequate runtime but also contributed to reducing the overall system weight,
enhancing user comfort during prolonged wear.

E.3 Main Body Third Iteration

Figure 33: Third iteration of the main body

In real-world testing conditions, thermal issues emerged as a critical bottleneck. When the
system was fully enclosed in the satchel bag, the Jetson Orin Nano’s CPU and GPU temper-
atures exceeded 70°C during continuous denoising and ASR workloads. After 30 minutes of
operation, thermal throttling was observed, confirming the need for an effective heat mitigation
strategy.

To manage the thermal load, the team evaluated two approaches:

• Conduction-based solutions, such as the use of heat pipes or copper sheets;

• Convection-based solutions, involving the creation of airflow intake and exhaust path-
ways.

To preserve the discreet profile of the wearable device, the team implemented the
convection-based strategy. Discreet air channels were integrated into the seams and zippers
of the satchel, enabling passive airflow without altering the visual appearance of the bag. This
significantly improved thermal stability during sustained operation. User experience was also
a focus in this iteration. Several design enhancements were introduced to simplify interaction
and maintenance:

• A slide-out module was designed to house the Jetson and UPS, enabling straightforward
access for battery replacement or debugging.

• A front-facing interface panel was added, featuring labeled USB and DisplayPort con-
nectors, along with physical control buttons to streamline user interaction.
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• A 0.91-inch OLED display (Waveshare) was integrated to display real-time power met-
rics, including voltage, current, and battery status.

Microphone Integration: To enhance speech capture at distance, the team integrated
the RODE VideoMic NTG—a highly directional supercardioid shotgun microphone—into the
satchel. A custom mounting solution was developed to preserve its acoustic performance while
remaining physically unobtrusive. Two mounting configurations were evaluated:

• Fully Concealed: The microphone was embedded entirely within the satchel. While
discreet, this setup limited effective capture to approximately 2–3 meters in moderately
noisy conditions ( 55 dB).

• Partially Exposed: The microphone’s front-facing pickup surface was left visible out-
side the bag. This significantly improved capture range—up to 6 meters—but at the ex-
pense of visual discreetness.

To balance these competing constraints, the team implemented a variable mounting system:

• The microphone could be extended outward or rotated toward the speaker for enhanced
directional capture;

• It could also be fully retracted into the satchel when discreetness was prioritized.

This flexible integration allowed the system to adapt dynamically to environmental and
situational demands, ensuring consistent performance while maintaining operational invisibility
when required.

Figure 34: The Computing Hardware Stored in a Satchel Bag

The main body of D’Noise is housed in a comfortable satchel bag for portability and dis-
creetness (Figure 34). A satchel bag is used as it is a common bag that would not look out of
place on the security staff.
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E.4 Future Work

Figure 35: Mock up of an improved handheld transcription device

As mentioned in Section 4.5, the team would consider integrating D’Noise with mobile
phones for a more intuitive and seamless design. This can enable more features like 2FA or bio-
metric authentication for further security, and help the prototype look more natural and discreet
from a third person’s perspective.
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F Experiments

F.1 Denoising Human Evaluation

Figure 36: Human evaluation experiment set up for the quiet environment at an average
ambient sound of 57db.

F.2 D’Noise Stress Test

To validate D’Noise’s suitability for deployment by security personnel, a controlled stress
test was conducted to evaluate its sustained performance over a 3-hour period. This duration was
chosen to reflect a realistic operational segment within a typical 6- to 12-hour shift, during which
personnel are expected to take intermittent breaks. The prototype was designed with modular
battery replacement in mind, allowing for straightforward hot-swapping after approximately 3
hours of use. Figure ?? presents the results of the system-level endurance test.
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Figure 37: A plot of the battery percentage and temperature against the number of hours the
Jetson Orin Nano could operate in the stress test.

Stress Testing Methodology: The stress test was conducted outdoors under shelter at
SUTD Building 1, Level 6, on a moderately sunny day. Ambient environmental noise primarily
originated from nearby road traffic. The complete system—including the handheld display unit
and the satchel-based Jetson Orin Nano processing module—was placed on a table. A Bluetooth
speaker was positioned nearby to simulate continuous speech playback. Two thermocouple
probes were used to capture thermal behavior:

• User-facing probe: Placed between the inner lining of the satchel and the table surface,
simulating skin contact during actual wear.

• Ambient probe: Left exposed to measure environmental air temperature.
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Figure 38: The results of the stress test for the handhel device, plotting the battery percentage
and temperature against time

Test Objectives and Evaluation Metrics: The following parameters were monitored
throughout the test to assess the system’s operational reliability:

• Battery Life (Processing Unit):
• Continuous inference on the Jetson Orin Nano running both RNNoise (denoising)
and Whisper (transcription) models.

• Time to depletion under sustained workload.

• Thermal Performance (Jetson Orin Nano):
• CPU and GPU temperatures were recorded to verify that they remained below ther-
mal throttling thresholds, ensuring stable processing throughput.

• Battery Life (Handheld Display Device):
• The Raspberry Pi Zero 2 W powered the handheld transcription interface, and its
battery discharge curve was logged concurrently.

• Satchel Surface Temperature:
• User-facing surface temperature was monitored to assess potential thermal discom-
fort over time.

Data Logging Procedure

Processing Unit (Jetson Orin Nano): A Bash script interfaced with the Waveshare UPS
to log CPU and GPU temperatures, and battery voltage at 15-minute intervals. These metrics
were used to track thermal stability and battery depletion under realistic use.
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Handheld Device (Raspberry Pi Zero 2 W): A separate script accessed battery data from
the onboard fuel gauge and logged it at the same interval, ensuring consistent sampling across
system components.

Figure 39: Temperature of the satchel against the ambient temperature

Thermal Measurements: Thermocouple data for both ambient and satchel-contact temper-
atures were recorded at 15-minute intervals to allow comparison of internal and external heating
trends.
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G User Validation Questionnaire

This appendix details the responses of the two security guards for the questionnaire and the
and the interview conducted after the tests detailed as in Section 4.4.

Section 1: Comfort and Usability

• How comfortable was the device to wear?
• Very Uncomfortable

• Uncomfortable

• Neutral

• Comfortable

• Very Comfortable

(Participant Responses): ”Very Comfortable”, ”Comfortable”

• Did the headgear and satchel bag feel secure while walking or moving?
• Not Secure

• Slightly Secure

• Moderately Secure

• Very Secure

(Participant Responses): ”Moderately Secure”, ”Very Secure”

• Were there any parts of the device that caused discomfort or irritation?
• Yes (Please describe: )

• No

(Participant Responses): ”No”, ”No”

Section 2: Design Feedback

• Were there any difficulties in putting on or removing the device?
• Yes (Please describe: )

• No

(Participant Responses): ”No”, ”No”

• How would you rate the weight of the device?
• Too Heavy

• Slightly Heavy

• Just Right

• Too Light

(Participant Responses): ”Just Right”, ”Just Right”
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• Were there any features or design elements that you particularly liked?
(Participant Responses): ”Yes”, “Noise cancelling justto focus on the person.”

• Do you have any suggestions for improving the design?
(Participant Response): “Make with no wires so that it won’t look suspicious.”

(Participant Response): “2FA for the design if it was stolen/lost or a more wet weather design”

Section 3: Workflow Integration

• Did the device interfere with your ability to perform routine tasks?
• Yes (Please describe: ”while suspicious looks like person”)

• No

(Participant Responses): ”Yes”, “Yes”

• How well do you think this device could fit into your daily workflow?
• Not Well

• Slightly Well

• Moderately Well

• Very Well

(Participant Responses): ”Very Well”, “Slightly Well”

• Do you think this device would improve communication in noisy environments?
• Yes

• No

• Not Sure

(Participant Responses): ”Yes”, “Yes”

Section 4: Additional Feedback

• Is there anything else you’d like to share about your experience with the device?
(Participant Responses): ”No”, “No”
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